69 research outputs found

    Distinct biogeographic patterns for archaea, bacteria, and fungi along the vegetation gradient at the continental scale in Eastern China

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in mSystems 2 (2017): e00174-16, doi:10.1128/mSystems.00174-16.The natural forest ecosystem in Eastern China, from tropical forest to boreal forest, has declined due to cropland development during the last 300 years, yet little is known about the historical biogeographic patterns and driving processes for the major domains of microorganisms along this continental-scale natural vegetation gradient. We predicted the biogeographic patterns of soil archaeal, bacterial, and fungal communities across 110 natural forest sites along a transect across four vegetation zones in Eastern China. The distance decay relationships demonstrated the distinct biogeographic patterns of archaeal, bacterial, and fungal communities. While historical processes mainly influenced bacterial community variations, spatially autocorrelated environmental variables mainly influenced the fungal community. Archaea did not display a distance decay pattern along the vegetation gradient. Bacterial community diversity and structure were correlated with the ratio of acid oxalate-soluble Fe to free Fe oxides (Feo/Fed ratio). Fungal community diversity and structure were influenced by dissolved organic carbon (DOC) and free aluminum (Ald), respectively. The role of these environmental variables was confirmed by the correlations between dominant operational taxonomic units (OTUs) and edaphic variables. However, most of the dominant OTUs were not correlated with the major driving variables for the entire communities. These results demonstrate that soil archaea, bacteria, and fungi have different biogeographic patterns and driving processes along this continental-scale natural vegetation gradient, implying different community assembly mechanisms and ecological functions for archaea, bacteria, and fungi in soil ecosystems.This research was financially supported by the National Natural Science Foundation of China (grant number 41520104001), the 111 Project, and the Fundamental Research Funds for the Central Universities

    Metallic micronutrients are associated with the structure and function of the soil microbiome

    Get PDF
    12 páginas.- 6 figuras.- 57 referencias.- Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-023-44182-2The relationship between metallic micronutrients and soil microorganisms, and thereby soil functioning, has been little explored. Here, we investigate the relationship between metallic micronutrients (Fe, Mn, Cu, Zn, Mo and Ni) and the abundance, diversity and function of soil microbiomes. In a survey across 180 sites in China, covering a wide range of soil conditions the structure and function of the soil microbiome are highly correlated with metallic micronutrients, especially Fe, followed by Mn, Cu and Zn. These results are robust to controlling for soil pH, which is often reported as the most important predictor of the soil microbiome. An incubation experiment with Fe and Zn additions for five different soil types also shows that increased micronutrient concentration affects microbial community composition and functional genes. In addition, structural equation models indicate that micronutrients positively contribute to the ecosystem productivity, both directly (micronutrient availability to plants) and, to a lesser extent, indirectly (via affecting the microbiome). Our findings highlight the importance of micronutrients in explaining soil microbiome structure and ecosystem functioning.This study was supported by the National Science Foundation of China (41991334 to J.X. and Z.D., 41721001 to J.X.), the National Key Research and Development Program of China (2019YFC1803704 to Z.D.) and the Modern Agricultural Industry Technology System of China (CARS-01 to J.X.). M.D-B. acknowledges support from TED2021-130908B-C41/AEI/10.13039/501100011033/Unión Europea NextGenerationEU/PRTR and from the Spanish Ministry of Science and Innovation for the I  +  D  +  i project PID2020-115813RA-I00 funded by MCIN/AEI/10.13039/501100011033.Peer reviewe

    Survival enhancing indications for coronary artery bypass graft surgery in California

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Coronary artery bypass graft (CABG) surgery is performed because of anticipated survival benefit, improvement in quality of life, or both. We performed this study to explore variations in clinical indications for CABG surgery among California hospitals and surgeons.</p> <p>Methods</p> <p>Using California CABG Outcomes Reporting Program data, we classified all isolated CABG cases in 2003–2004 as having "probable survival enhancing indications (SEIs)", "possible SEIs" or "non-SEIs." Patient and hospital characteristics associated with SEIs were examined.</p> <p>Results</p> <p>While 82.9% of CABG were performed for probable SEIs, the range extended from 68% to 96% among hospitals and 51% to 100% among surgeons. SEI rates were higher among patients aged ≥ 65 compared with those aged 18–64 (Adjusted Odds Ratio [AOR] > 1.29 for age groups 65–69, 70–74 and ≥ 75; all p < 0.001), among Asians and Native Americans compared with Caucasians (AOR 1.22 and 1.15, p < 0.001); and among patients with hypertension, peripheral vascular disease, diabetes, cerebrovascular disease and congestive heart failure compared to patients without these conditions (AOR > 1.09, all p < 0.001). Variations in indications for surgery were more strongly related to patient mix than to surgeon or hospital effects (intraclass correlation [ICC] = 0.04 for hospital; ICC = 0.01 for surgeon).</p> <p>Conclusion</p> <p>California hospitals and surgeons vary in their distribution of indications for CABG surgery. Further research is required to identify the roles of market factors, referral patterns, patient preferences, and local clinical culture in producing the observed variations.</p

    The Main Progress of Perovskite Solar Cells in 2020–2021

    Get PDF
    Perovskite solar cells (PSCs) emerging as a promising photovoltaic technology with high efficiency and low manufacturing cost have attracted the attention from all over the world. Both the efficiency and stability of PSCs have increased steadily in recent years, and the research on reducing lead leakage and developing eco-friendly lead-free perovskites pushes forward the commercialization of PSCs step by step. This review summarizes the main progress of PSCs in 2020 and 2021 from the aspects of efficiency, stability, perovskite-based tandem devices, and lead-free PSCs. Moreover, a brief discussion on the development of PSC modules and its challenges toward practical application is provided
    corecore