27 research outputs found

    Epidemiological Features of Spinal Cord Injury in China: A Systematic Review

    Get PDF
    Background: Spinal cord injury (SCI) is a severe condition that disrupts patients' physiological, mental, and social well-being state and exerts great financial burden on patients, their families and social healthcare system. This review intends to compile studies regarding epidemiological features of SCI in China.Methods: Searches were conducted on PubMed, EMBASE, Web of Science and Cochrane Library for relevant studies published through January, 2018. Studies reported methodological and epidemiological data were collected by two authors independently.Results: Seventeen studies met the inclusion criteria. Two studies reported incidence of SCI that is 60.6 in Beijing (2002) and 23.7 in Tianjin (2004–2008). All studies showed male had a larger percentage in SCI compared to female except Taiwan (2000–2003). The average male and female ratio was 3–4:1 in China and the highest male and female ratio was 5.74: 1 in Tianjin (2004–2007). Farmers, laborers and unemployed people accounted for more than half of the SCI patients in China. Fall was the primary causation with exception of Heilongjiang (2009–2013), Beijing (2001–2010), and Taiwan (2002–2003), where motor vehicle collision (MCVs) was the leading causation. Pulmonary infection, urinary tract infection and bedsore were common complications, accounting for approximately 70% of SCI patients in China.Conclusion: This review shows that epidemiological features of SCI are various in different regions in China and prevention should be implemented by regions. The number of patients with SCI result from fall and MCVs may become a main public health problem because population aging and economic developing in China. However, because all included studies were retrospective and lacking a register system in China, some data were incomplete and some cases may be left out, so the conclusion may not be generalizable to the other regions

    Soil Habitats Are Affected by Fungal Waste Recycling on Farmland in Agro-Pastoral Ecotone in Northern China

    No full text
    As part of the ecological barrier and an essential element of food security, the agro-pastoral ecotone is vital in northern China. Since soil fertility in northern China is low due to frequent surface disturbances, it is necessary to improve the properties of the soil. This study aims to examine the impact of fungal residue return on soil properties based on six treatments (CK: 0 kg/40 m2; R3: 90 kg/40 m2; R5: 150 kg/40 m2; R7: 210 kg/40 m2; R9: 270 kg/40 m2; R11: 330 kg/40 m2;) of fungal residue return concentration experimental data from 0 to 30 cm soil depth. The results showed that the effect of fungal residue returning on soil habits was greater at 0–10 cm of the surface layer. The bulk density can be reduced to 25.83% of CK, and water content can be increased up to 26.26%. Adding fungal residue to the field led to a greater increase in soil parameters (SOM and AP), and this characteristic effect continued as the return concentration increased. The number of soil bacteria and actinomycetes remained stable, and the amount of fungi was at its lowest. Compared with CK, the number of bacteria, fungi, and actinomycetes increased by 1.94 times, 1.46 times, and 1.71 times, respectively. After the residue was returned to the field, AK had the strongest correlation with other factors (p p < 0.01). In conclusion, this study presents a new method of resource utilization of downstream wastes in the food industry while simultaneously providing natural, pollution-free improvements to the soil, which is very beneficial to increasing crop yield

    Soil Infiltration Properties Are Affected by Typical Plant Communities in a Semi-Arid Desert Grassland in China

    No full text
    A process of infiltration from the soil surface to form soil water is known as soil infiltration; this is the only way for plants to absorb and use soil water. This process is closely related to nutrient migration, surface runoff, and soil erosion. The objectives of this study were to quantify the effect of typical plant communities on soil infiltration performance, reveal the interaction between soil infiltration rate and soil characteristics and plant roots, and determine the primary influencing elements on the Xilamuren grassland. The ring knife method was used to determine the soil infiltration rate at the 0–30 cm soil layer of six typical vegetation communities. The results indicated that the infiltration rate of the Koeleria macrantha community was highest at the soil depth of 0–5 cm, while that of the Convolvulus ammannii community was lowest, reaching 4.25 mm·min−1 and 0.53 mm·min−1, respectively. The soil infiltration rate of different plant communities gradually declined with the increment of soil depth. The strongest correlations were found between bulk density, total porosity, organic matter, root characteristics, and soil infiltration rate. The bulk density, initial water content, capillary porosity, and clay content were the primary influencing factors acting on soil infiltration in the region. Other factors indirectly impacted the infiltration rate by modifying bulk density, which was a crucial limiting factor determining the infiltration rate in the research region. The study’s findings will give theoretical and practical assistance for the prevention and management of soil deterioration and grassland restoration in this area

    Multiple mechanisms of curcumin targeting spinal cord injury

    No full text
    Spinal cord injury (SCI) is an irreversible disease process with a high disability and mortality rate. After primary spinal cord injury, the secondary injury may occur in sequence, which is composed of ischemia and hypoxia, excitotoxicity, calcium overload, oxidative stress and inflammation, resulting in massive death of parenchymal cells in the injured area, followed by the formation of syringomyelia. Effectively curbing the process of secondary injury can promote nerve repair and improve functional prognosis. As the main active ingredient in turmeric, curcumin can play an important role in reducing inflammation and oxidation, protecting the neurons, and ultimately reducing spinal cord injury. This article reviews the effects of curcumin on the repair of nerve injury, with emphasis on the various mechanisms by which curcumin promotes the treatment of spinal cord injury

    Effectiveness of Teriparatide on Fracture Healing: A Systematic Review and Meta-Analysis

    No full text
    <div><p>Purpose</p><p>Nowadays, the efficacy of teriparatide in treating osteoporosis was widely accepted, but the discussion about using teriparatide to enhance fracture healing hasn’t come to an agreement. This meta-analysis was conducted to evaluate the effectiveness of teriparatide for fracture healing.</p><p>Methods</p><p>We searched PubMed, the Cochrane Library, and Embase in August 2016 for randomized controlled trials (RCTs) which concerned the treatment of teriparatide for fracture healing.</p><p>Results</p><p>Finally, a total of 380 patients were randomly assigned in the 5 trials included in this meta-analysis. There was a significant effectiveness with regards to function improvement in patients following fracture, however, there was no significant effectiveness with regards to time of radiographic fracture healing, fracture healing rate and reduction in pain.</p><p>Conclusions</p><p>This analysis showed that administration of teriparatide following fracture lacked the effectiveness for fracture healing. Moreover, teriparatide administration had no apparent adverse effects. These results should be interpreted with caution because of some clear limitations. If we want to confirm whether teriparatide improves fracture healing, more high-quality randomized controlled trials are needed.</p></div

    Quantifying the Degree of Aggregation from Fluorescent Dye-Conjugated DNA Probe by Single Molecule Photobleaching Technology for the Ultrasensitive Detection of Adenosine

    No full text
    In this work, we demonstrated a single molecule photobleaching-based strategy for the ultrasensitive detection of adenosine. A modified split aptamer was designed to specifically recognize individual adenosine molecules in solution. The specific binding of dye-labeled short strand DNA probes onto the elongated aptamer strand in the presence of adenosine resulted in a concentration-dependent self-aggregation process. The degree-of-aggregation (DOA) of the short DNA probes on the elongated aptamer strand could then be accurately determined based on the single molecule photobleaching measurement. Through statistically analyzing the DOA under different target concentrations, a well-defined curvilinear relationship between the DOA and target molecule concentration (e.g., adenosine) was established. The limit-of-detection (LOD) is down to 44.5 pM, which is lower than those recently reported results with fluorescence-based analysis. Owing to the high sensitivity and excellent selectivity, the sensing strategy described herein would find broad applications in biomolecule analysis under complicated surroundings

    Identification and Verification of Candidate Genes Regulating Neural Stem Cells Behavior Under Hypoxia

    No full text
    Background/Aims: Neural stem cells (NSCs) reside in a hypoxic environment, and hypoxia plays an important role in their development and differentiation. This study aimed to explore the underlying mechanisms by which hypoxia affects NSC behavior. Methods: In the current study, we downloaded the gene expression dataset GSE68572 and identified the differentially expressed genes (DEGs) by analyzing high-throughput gene expression in hypoxic and normoxic NSCs. Subsequently, we analyzed these data using a combined bioinformatics approach and predicted the microRNAs (miRNAs) targeting the key gene using miRNA databases. Quantitative real-time PCR (qRT-PCR) was used to validate the expression of the top five DEGs. Results: In total, 1347 genes were identified as DEGs. We identified the predominant gene ontology categories and Kyoto Encyclopedia of Genes and Genomes pathways that were significantly over-represented in the hypoxic NSCs. A protein–protein interaction network he identification of miRNAs and their putative targets may offer new diagnostic and therapeutic strategies for liver cancer the top 10 core genes. Vascular endothelial growth factor A (VEGFA) had the highest degree and may be the key gene concerning NSC behavior under hypoxia. Further validation of the top five DEGs by qRT-PCR demonstrated that four DEGs were significantly higher and one DEG was significantly lower in the hypoxic group than in the control group. Seven miRNAs were predicted and proved to target VEGFA. Conclusion: This preliminary study can prompt the understanding of the molecular mechanisms by which hypoxia has an impact on NSC behavior and can help to optimize stem cell therapies for central nervous system injuries and diseases
    corecore