158 research outputs found

    Machine Learning and Artificial Intelligence in PK-PD Modeling: Fad, Friend, or Foe?

    Get PDF
    Developing pharmacokinetic-pharmacodynamic (PK-PD) models requires a significant amount of time from highly skilled scientists and the demand for this expertise far outstrips the current supply. The use of machine learning (ML) and artificial intelligence (AL) in PK-PD modeling promises to reduce the number human supervision hours and improve predictive performance, but in its current form it suffers from various limitations. In this perspective, we aimed to structure the main trends and define boundaries and opportunities

    Partition-based K-space Synthesis for Multi-contrast Parallel Imaging

    Full text link
    Multi-contrast magnetic resonance imaging is a significant and essential medical imaging technique.However, multi-contrast imaging has longer acquisition time and is easy to cause motion artifacts. In particular, the acquisition time for a T2-weighted image is prolonged due to its longer repetition time (TR). On the contrary, T1-weighted image has a shorter TR. Therefore,utilizing complementary information across T1 and T2-weighted image is a way to decrease the overall imaging time. Previous T1-assisted T2 reconstruction methods have mostly focused on image domain using whole-based image fusion approaches. The image domain reconstruction method has the defects of high computational complexity and limited flexibility. To address this issue, we propose a novel multi-contrast imaging method called partition-based k-space synthesis (PKS) which can achieve super reconstruction quality of T2-weighted image by feature fusion. Concretely, we first decompose fully-sampled T1 k-space data and under-sampled T2 k-space data into two sub-data, separately. Then two new objects are constructed by combining the two sub-T1/T2 data. After that, the two new objects as the whole data to realize the reconstruction of T2-weighted image. Finally, the objective T2 is synthesized by extracting the sub-T2 data of each part. Experimental results showed that our combined technique can achieve comparable or better results than using traditional k-space parallel imaging(SAKE) that processes each contrast independently

    Three Pairs of New Spirocyclic Alkaloid Enantiomers From the Marine-Derived Fungus Eurotium sp. SCSIO F452

    Get PDF
    Three pairs of new spirocyclic alkaloid enantiomers eurotinoids A–C (1–3), as well as a known biogenetically related racemate dihydrocryptoechinulin D (4) were isolated from a marine-derived fungus Eurotium sp. SCSIO F452. Their structures were determined by spectroscopic analyses and electronic circular dichroism (ECD) calculations. Compounds 1 and 2 represent the first two “meta” products from a non-stereoselective [4 + 2] Diels-Alder cycloaddition presumably between an enone group of a diketopiperazine alkaloid and a diene group of a benzaldehyde derivative via a new head-to-tail coupling mode biosynthetically, while 3 and 4 were “ortho” products. Their enantiomers exhibited different antioxidative and cytotoxic activities. The modes of action were investigated by a preliminary molecular docking study

    Open burning of rice, corn and wheat straws: primary emissions, photochemical aging, and secondary organic aerosol formation

    Get PDF
    Agricultural residues are among the most abundant biomass burned globally, especially in China. However, there is little information on primary emissions and photochemical evolution of agricultural residue burning. In this study, indoor chamber experiments were conducted to investigate primary emissions from open burning of rice, corn and wheat straws and their photochemical aging as well. Emission factors of NOx, NH3, SO2, 67 non-methane hydrocarbons (NMHCs), particulate matter (PM), organic aerosol (OA) and black carbon (BC) under ambient dilution conditions were determined. Olefins accounted for > 50% of the total speciated NMHCs emission (2.47 to 5.04 g kg(-1)), indicating high ozone formation potential of straw burning emissions. Emission factors of PM (3.73 to 6.36 g kg(-1)) and primary organic carbon (POC, 2.05 to 4.11 gC kg(-1)), measured at dilution ratios of 1300 to 4000, were lower than those reported in previous studies at low dilution ratios, probably due to the evaporation of semi-volatile organic compounds under high dilution conditions. After photochemical aging with an OH exposure range of (1.97-4.97) x 10(10) molecule cm(-3) s in the chamber, large amounts of secondary organic aerosol (SOA) were produced with OA mass enhancement ratios (the mass ratio of total OA to primary OA) of 2.4-7.6. The 20 known precursors could only explain 5.0-27.3% of the observed SOA mass, suggesting that the major precursors of SOA formed from open straw burning remain unidentified. Aerosol mass spectrometry (AMS) signaled that the aged OA contained less hydrocarbons but more oxygen-and nitrogen-containing compounds than primary OA, and carbon oxidation state (OSc) calculated with AMS resolved O / C and H / C ratios increased linearly (p < 0.001) with OH exposure with quite similar slopes

    Widespread occurrence of distinct alkenones from Group I haptophytes in freshwater lakes: Implications for paleotemperature and paleoenvironmental reconstructions

    Get PDF
    Alkenones are C35-C42 polyunsaturated ketone lipids that are commonly employed to reconstruct changes in sea surface temperature. However, their use in coastal seas and saline lakes can be hindered by species-mixing effects. We recently hypothesized that freshwater lakes are immune to species-mixing effects because they appear to exclusively host Group I haptophyte algae, which produce a distinct distribution of alkenones with a relatively consistent response of alkenone unsaturation to temperature. To evaluate this hypothesis and explore the geographic extent of Group I haptophytes, we analyzed alkenones in sediment and suspended particulate matter samples from lakes distributed throughout the mid- and high latitudes of the Northern Hemisphere (n = 30). Our results indicate that Group I-type alkenone distributions are widespread in freshwater lakes from a range of different climates (mean annual air temperature range: -17.3-10.9 degrees C; mean annual precipitation range: 125-1657 mm yr(-1); latitude range: 40-81 degrees N), and are commonly found in neutral to basic lakes (pH > 7.0), including volcanic lakes and lakes with mafic bedrock. We show that these freshwater lakes do not feature alkenone distributions characteristic of Group II lacustrine haptophytes, providing support for the hypothesis that freshwater lakes are immune to species-mixing effects. In lakes that underwent temporal shifts in salinity, we observed mixed Group I/II alkenone distributions and the alkenone contributions from each group could be quantified with the RIK37 index. Additionally, we observed significant correlations of alkenone unsaturation (U-37(K)) with seasonal and mean annual air temperature with this expanded freshwater lakes dataset, with the strongest correlation occurring during the spring transitional season (U-37(K) = 0.029 * T - 0.49; r(2) = 0.60; p < 0.0001). We present new sediment trap data from two lakes in northern Alaska (Toolik Lake, 68.632 degrees N, 149.602 degrees W; lake E5, 68.643 degrees N, 149.458 degrees W) that demonstrate the highest sedimentary fluxes of alkenones in the spring transitional season, concurrent with the period of lake ice melt and isothermal mixing. Together, these data provide a framework for evaluating lacustrine alkenone distributions and utilizing alkenone unsaturation as a lake temperature proxy. (C) 2018 Elsevier B.V. All rights reserved
    corecore