29 research outputs found

    Diagnosing Potts criticality and two-stage melting in one-dimensional hard-boson models

    Full text link
    We investigate a model of hard-core bosons with infinitely repulsive nearest- and next-nearest-neighbor interactions in one dimension, introduced by Fendley, Sengupta and Sachdev in Phys. Rev. B 69, 075106 (2004). Using a combination of exact diagonalization, tensor network, and quantum Monte Carlo simulations, we show how an intermediate incommensurate phase separates a crystalline and a disordered phase. We base our analysis on a variety of diagnostics, including entanglement measures, fidelity susceptibility, correlation functions, and spectral properties. According to theoretical expectations, the disordered-to-incommensurate-phase transition point is compatible with Berezinskii-Kosterlitz-Thouless universal behaviour. The second transition is instead non-relativistic, with dynamical critical exponent z>1z > 1. For the sake of comparison, we illustrate how some of the techniques applied here work at the Potts critical point present in the phase diagram of the model for finite next-nearest-neighbor repulsion. This latter application also allows to quantitatively estimate which system sizes are needed to match the conformal field theory spectra with experiments performing level spectroscopy.Comment: 18 pages, 14 figure

    Variational theory of angulons and their rotational spectroscopy

    Full text link
    The angulon, a quasiparticle formed by a quantum rotor dressed by the excitations of a many-body bath, can be used to describe an impurity rotating in a fluid or solid environment. Here we propose a coherent state ansatz in the co-rotating frame which provides a comprehensive theoretical description of angulons. We reveal the quasiparticle properties, such as energies, quasiparticle weights and spectral functions, and show that our ansatz yields a persistent decrease in the impurity's rotational constant due to many-body dressing, consistent with experimental observations. From our study, a picture of the angulon emerges as an effective spin interacting with a magnetic field that is self-consistently generated by the molecule's rotation. Moreover, we discuss rotational spectroscopy, which focuses on the response of rotating molecules to a laser perturbation in the linear response regime. Importantly, we take into account initial-state interactions that have been neglected in prior studies and reveal their impact on the excitation spectrum. To examine the angulon instability regime, we use a single-excitation ansatz and obtain results consistent with experiments, in which a broadening of spectral lines is observed while phonon wings remain highly suppressed due to initial-state interactions

    Recent advances in the compound-oriented and pattern-oriented approaches to the quality control of herbal medicines

    Get PDF
    The current approaches to the quality control of herbal medicines are either compound-oriented or pattern-oriented, the former targeting specific components with some known chemical properties and the latter targeting all detectable components. The marker approach uses specific chemical compounds with known molecular structures, while the multi-compound approach uses both chemical compounds with known structures and those with partial chemical information e.g. retention times, mass spectra and ultraviolet spectra. Apart from chromatographic techniques, new techniques such as oscillating and electrochemistry fingerprints have been developed for quality control. Chemometric resolution methods are widely used for component deconvolution and data comparison. Pattern recognition techniques are used for authentication of herbal medicines

    Study on the Common Molecular Mechanism of Metabolic Acidosis and Myocardial Damage Complicated by Neonatal Pneumonia

    No full text
    Pneumonia is a common clinical disease in the neonatal period and poses a serious risk to infant health. Therefore, the understanding of molecular mechanisms is of great importance for the development of methods for the rapid and accurate identification, classification and staging, and even disease diagnosis and therapy of pneumonia. In this study, a nontargeted metabonomic method was developed and applied for the analysis of serum samples collected from 20 cases in the pneumonia control group (PN) and 20 and 10 cases of pneumonia patients with metabolic acidosis (MA) and myocardial damage (MD), respectively, with the help of ultrahigh-performance liquid chromatography–high-resolution mass spectrometry (UPLC–HRMS). The results showed that compared with the pneumonia group, 23 and 21 differential metabolites were identified in pneumonia with two complications. They showed high sensitivity and specificity, with the area under the curve (ROC) of the receiver operating characteristic curve (ROC) larger than 0.7 for each differential molecule. There were 14 metabolites and three metabolic pathways of sphingolipid metabolism, porphyrin and chlorophyll metabolism, and glycerophospholipid metabolism existing in both groups of PN and MA, and PN and MD, all involving significant changes in pathways closely related to amino acid metabolism disorders, abnormal cell apoptosis, and inflammatory responses. These findings of molecular mechanisms should help a lot to fully understand and even treat the complications of pneumonia in infants

    A comparative study of volatile components in green, oolong and black teas by using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry and multivariate data analysis

    No full text
    The difference of volatile components in green, oolong and black teas was studied by using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC x GC-TOFMS). Simultaneous distillation extraction was proved to be a suitable technique to extract the analytes with interest. A total of 450 compounds were tentatively identified with comparison to the standard mass spectra in available databases, retention index on the first dimension and structured chromatogram. 33 tea samples, including 12,12 and 9 samples of green, oolong and black tea were analyzed by using GC x GC-TOFMS. After peak alignment, around 3600 peaks were detected. Partial least squares - discriminant analysis and hierarchical cluster analysis were used to classify these samples, then non-parametric hypothesis test (Mann-Whitney U test) and the variable importance in the projection (VIP) were applied to discover the key components to distinguish the three types of tea with significant difference amongst them. 74 differential compounds are defined to interpret the chemical differences of 3 types of tea. This study shows the power of GC x GC-TOFMS method combined with multivariate data analysis to investigate natural products with high complexity for information extraction. (c) 2013 Elsevier B.V. All rights reserved

    Design and Experiment of a Differential-Based Power Split Device

    No full text
    Hybrid electric vehicles have excellent energy efficiency and emission performance. Power split device (PSD) is a key component that directly affects the control strategy of power systems, the economic consumption of fuel, and the dynamic performance of vehicles. A differential-based PSD was proposed in this paper. A traditional differential was taken as the prototype and a new design method is proposed to retrofit the differential into a PSD. First, a comprehensive approach that includes theoretical analysis and software simulation was used to analyze the possibility as well as the necessity of retrofitting the differential into PSD. Then the differential was retrofitted. Finally, finite element analysis and bench test were conducted. Results showed that applying the retrofitted differential as PSD is practicable

    Ion Fusion of High-Resolution LC MS-Based Metabolomics Data to Discover More Reliable Biomarkers

    No full text
    A systematic approach for the fusion of associated ions from a common molecule was developed to generate "one feature for one peak" metabolomics data. This approach guarantees that each molecule is equally selected as a potential biomarker and may largely enhance the chance to obtain reliable findings without employing redundant ion information. The ion fusion is based on low mass variation in contrast to the theoretical calculation measured by a high-resolution mass spectrometer, such as LTQ orbitrap, and a high correlation of ion pairs from the same molecule. The mass characteristics of isotopic distribution, neutral loss, and adduct ions were simultaneously applied to inspect each extracted ion in the range of a predefined retention time window. The correlation coefficient was computed with the corresponding intensities of each ion pair among all experimental samples. Serum metabolomics data for the investigation of hepatocellular carcinoma (HCC) and healthy controls were utilized as an example to demonstrate this strategy. In total, 609 and 1084 ion pairs were respectively found meeting one or more criteria for fusion, and therefore fused to 106 and 169 metabolite features of the datasets in the positive and negative modes, respectively. The important metabolite features were separately discovered and compared to distinguish the HCC from the healthy controls using the two datasets with and without ion fusion. The results show that the developed method can be an effective tool to process high-resolution mass spectrometry data in "omics" studies

    Removal of false positive features to generate authentic peak table for high-resolution mass spectrometry-based metabolomics study

    No full text
    In metabolomics research, false positive features from non-sample sources and noises usually exist in the peak table, they will make the results of screening differential metabolites or biomarkers unreliable. In this study, a method to remove false positive features (rFPF) was developed to improve the quality of the peak table. rFPF recognizes real peak profiles based on the information entropy and statistical correlation, and eliminates false positive features from non-sample sources and noises. A standard mixture with 42 standards (14 isotopic labeled internal standards and 28 common standards) and a urine sample were applied to evaluate the effectiveness of the rFPF method. The analysis results of metabolite standards showed that more than 92% false positive features were removed by rFPF, but target standards completely remained. The analysis results of urine sample showed that the number of features was significantly reduced from 7182 to 2522. Interestingly, 98% of the identified metabolites remained after removing false positive features. The proposed rFPF shows great prospects as a new data handling method for metabolomics studies. (C) 2019 Elsevier B.V. All rights reserved
    corecore