8,457 research outputs found

    Self-assembly of noble metal nanoparticles into sub-100 nm colloidosomes with collective optical and catalytic properties.

    Get PDF
    Self-assembly at the nanoscale represents a powerful tool for creating materials with new structures and intriguing collective properties. Here, we report a novel strategy to synthesize nanoscale colloidosomes of noble metals by assembling primary metal nanoparticles at the interface of emulsion droplets formed by their capping agent. This strategy produces noble metal colloidosomes of unprecedentedly small sizes (<100 nm) in high yield and uniformity, which is highly desirable for practical applications. In addition, it enables the high tunability of the composition, producing a diversity of monometallic and bimetallic alloy colloidosomes. The colloidosomes exhibit interesting collective properties that are different from those of individual colloidal nanoparticles. Specifically, we demonstrate Au colloidosomes with well-controlled interparticle plasmon coupling and Au-Pd alloy colloidosomes with superior electrocatalytic performance, both thanks to the special structural features that arise from the assembly. We believe this strategy provides a general platform for producing a rich class of miniature colloidosomes that may have fascinating collective properties for a broad range of applications

    Phosphatase of regenerating liver: a novel target for cancer therapy

    Get PDF
    INTRODUCTION: Phosphatases of regenerating livers (PRLs) are novel oncogenes that interact with many well-established cell signaling pathways that are misregulated in cancer, and are known to drive cancer metastasis when overexpressed. AREAS COVERED: This review covers basic information of the discovery and characteristics of the PRL family. We also report findings on the role of PRL in cancer, cell functions and cell signaling. Furthermore, PRL's suitability as a novel drug target is discussed along with current methods being developed to facilitate PRL inhibition. EXPERT OPINION: PRLs show great potential as novel drug targets for anticancer therapeutics. Studies indicate that PRL can perturb major cancer pathways such as Src/ERK1/2 and PTEN/PI3K/Akt. Upregulation of PRLs has also been shown to drive cancer metastasis. However, in order to fully realize its therapeutic potential, a deeper understanding of the function of PRL in normal tissue and in cancer must be obtained. Novel and integrated biochemical, chemical, biological, and genetic approaches will be needed to identify PRL substrate(s) and to provide proof-of-concept data on the druggability of the PRL phosphatases
    • …
    corecore