37,637 research outputs found
A Note on the DQ Analysis of Anisotropic Plates
Recently, Bert, Wang and Striz [1, 2] applied the differential quadrature
(DQ) and harmonic differential quadrature (HDQ) methods to analyze static and
dynamic behaviors of anisotropic plates. Their studies showed that the methods
were conceptually simple and computationally efficient in comparison to other
numerical techniques. Based on some recent work by the present author [3, 4],
the purpose of this note is to further simplify the formulation effort and
improve computing efficiency in applying the DQ and HDQ methods for these
cases
Long-Range Coulomb Effect on the Antiferromagnetism in Electron-doped Cuprates
Using mean-field theory, we illustrate the long-range Coulomb effect on the
antiferromagnetism in the electron-doped cuprates. Because of the Coulomb
exchange effect, the magnitude of the effective next nearest neighbor hopping
parameter increases appreciably with increasing the electron doping
concentration, raising the frustration to the antiferromagnetic ordering. The
Fermi surface evolution in the electron-doped cuprate NdCeCuO
and the doping dependence of the onset temperature of the antiferromagnetic
pseudogap can be reasonably explained by the present consideration.Comment: 4 pages, 4 figure
Effect of quantum fluctuations on structural phase transitions in SrTiO_3 and BaTiO_3
Using path-integral Monte Carol simulations and an ab initio effective
Hamiltonian, we study the effects of quantum fluctuations on structural phase
transitions in the cubic perovskite compounds SrTiO3 and BaTiO3. We find
quantum fluctuations affect ferroelectric (FE) transitions more strongly than
antiferrodistortive (AFD) ones, even though the effective mass of a single FE
local mode is larger. For SrTiO3 we find that the quantum fluctuations suppress
the FE transition completely, and reduce the AFD transition temperature from
130K to 110K. For BaTiO3, quantum fluctuations do not affect the order of the
transition, but do reduce the transition temperature by 35-50 K. The
implications of the calculations are discussed.Comment: Revtex (preprint style, 14 pages) + 2 postscript figures. A version
in two-column article style with embedded figures is available at
http://electron.rutgers.edu/~dhv/preprints/index.html#wz_qs
T-Shape Molecular Heat Pump
We report on the first molecular device of heat pump modeled by a T-shape
Frenkel-Kontorova lattice. The system is a three-terminal device with the
important feature that the heat can be pumped from the low-temperature region
to the high-temperature region through the third terminal. The pumping action
is achieved by applying a stochastic external force that periodically modulates
the atomic temperature. The temperature, the frequency and the system size
dependence of heat pump are briefly discussed.Comment: 6 figure
Automated data integration for developmental biological research
In an era exploding with genome-scale data, a major challenge for developmental biologists is how to extract significant clues from these publicly available data to benefit our studies of individual genes, and how to use them to improve our understanding of development at a systems level. Several studies have successfully demonstrated new approaches to classic developmental questions by computationally integrating various genome-wide data sets. Such computational approaches have shown great potential for facilitating research: instead of testing 20,000 genes, researchers might test 200 to the same effect. We discuss the nature and state of this art as it applies to developmental research
Volume integrals associated with the inhomegeneous Helmholtz equation. Part 2: Cylindrical region; rectangular region
Results are presented for volume integrals associated with the Helmholtz operator, nabla(2) + alpha(2), for the cases of a finite cylindrical region and a region of rectangular parallelepiped. By using appropriate Taylor series expansions and multinomial theorem, these volume integrals are obtained in series form for regions r r' and r 4', where r and r' are distances from the origin to the point of observation and source, respectively. When the wave number approaches zero, the results reduce directly to the potentials of variable densities
First-principles study of stability and vibrational properties of tetragonal PbTiO_3
A first-principles study of the vibrational modes of PbTiO_3 in the
ferroelectric tetragonal phase has been performed at all the main symmetry
points of the Brillouin zone (BZ). The calculations use the local-density
approximation and ultrasoft pseudopotentials with a plane-wave basis, and
reproduce well the available experimental information on the modes at the Gamma
point, including the LO-TO splittings. The work was motivated in part by a
previously reported transition to an orthorhombic phase at low temperatures
[(J. Kobayashi, Y. Uesu, and Y. Sakemi, Phys. Rev. B {\bf 28}, 3866 (1983)]. We
show that a linear coupling of orthorhombic strain to one of the modes at Gamma
plays a role in the discussion of the possibility of this phase transition.
However, no mechanical instabilities (soft modes) are found, either at Gamma or
at any of the other high-symmetry points of the BZ.Comment: 8 pages, two-column style with 3 postscript figures embedded. Uses
REVTEX and epsf macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/index.html#ag_pbt
- …
