22,517 research outputs found

    On the propagation of plane waves above an impedance surface

    Get PDF
    The propagation of grazing incidence plane waves along a finite impedance boundary is investigated. A solution of the semi-infinite problem, where a harmonic motion, parallel to the boundary, is imposed along a line perpendicular to the boundary, is obtained. This solution consists of quasiplane waves, waves moving parallel to the boundary with amplitude and phase variations perpendicular to the boundary. Several approximations to the full solution are considered

    T-Shape Molecular Heat Pump

    Full text link
    We report on the first molecular device of heat pump modeled by a T-shape Frenkel-Kontorova lattice. The system is a three-terminal device with the important feature that the heat can be pumped from the low-temperature region to the high-temperature region through the third terminal. The pumping action is achieved by applying a stochastic external force that periodically modulates the atomic temperature. The temperature, the frequency and the system size dependence of heat pump are briefly discussed.Comment: 6 figure

    Effect of quantum fluctuations on structural phase transitions in SrTiO_3 and BaTiO_3

    Full text link
    Using path-integral Monte Carol simulations and an ab initio effective Hamiltonian, we study the effects of quantum fluctuations on structural phase transitions in the cubic perovskite compounds SrTiO3 and BaTiO3. We find quantum fluctuations affect ferroelectric (FE) transitions more strongly than antiferrodistortive (AFD) ones, even though the effective mass of a single FE local mode is larger. For SrTiO3 we find that the quantum fluctuations suppress the FE transition completely, and reduce the AFD transition temperature from 130K to 110K. For BaTiO3, quantum fluctuations do not affect the order of the transition, but do reduce the transition temperature by 35-50 K. The implications of the calculations are discussed.Comment: Revtex (preprint style, 14 pages) + 2 postscript figures. A version in two-column article style with embedded figures is available at http://electron.rutgers.edu/~dhv/preprints/index.html#wz_qs

    Spheres and Prolate and Oblate Ellipsoids from an Analytical Solution of Spontaneous Curvature Fluid Membrane Model

    Full text link
    An analytic solution for Helfrich spontaneous curvature membrane model (H. Naito, M.Okuda and Ou-Yang Zhong-Can, Phys. Rev. E {\bf 48}, 2304 (1993); {\bf 54}, 2816 (1996)), which has a conspicuous feature of representing the circular biconcave shape, is studied. Results show that the solution in fact describes a family of shapes, which can be classified as: i) the flat plane (trivial case), ii) the sphere, iii) the prolate ellipsoid, iv) the capped cylinder, v) the oblate ellipsoid, vi) the circular biconcave shape, vii) the self-intersecting inverted circular biconcave shape, and viii) the self-intersecting nodoidlike cylinder. Among the closed shapes (ii)-(vii), a circular biconcave shape is the one with the minimum of local curvature energy.Comment: 11 pages, 11 figures. Phys. Rev. E (to appear in Sept. 1999

    η\eta-meson in nuclear matter

    Full text link
    The η\eta-nucleon (η\etaN) interactions are deduced from the heavy baryon chiral perturbation theory up to the next-to-leading-order terms. Combining the relativistic mean-field theory for nucleon system, we have studied the in-medium properties of η\eta-meson. We find that all the elastic scattering η\etaN interactions come from the next-to-leading-order terms. The η\eta N sigma term is found to be about 280±\pm130 MeV. The off-shell terms are also important to the in-medium properties of η\eta-meson. On application of the latest determination of the η\etaN scattering length, the ratio of η\eta-meson effective mass to its vacuum value is near 0.84±0.0150.84\pm0.015, while the optical potential is about (83±5)-(83\pm5) MeV, at the normal nuclear density.Comment: 8 pages, 3 figures, to appear in PRC, many modification

    Initial stage of the 2D-3D transition of a strained SiGe layer on a pit-patterned Si(001) template

    Full text link
    We investigate the initial stage of the 2D-3D transition of strained Ge layers deposited on pit-patterned Si(001) templates. Within the pits, which assume the shape of inverted, truncated pyramids after optimized growth of a Si buffer layer, the Ge wetting layer develops a complex morphology consisting exclusively of {105} and (001) facets. These results are attributed to a strain-driven step-meandering instability on the facetted side-walls of the pits, and a step-bunching instability at the sharp concave intersections of these facets. Although both instabilities are strain-driven, their coexistence becomes mainly possible by the geometrical restrictions in the pits. It is shown that the morphological transformation of the pit surface into low-energy facets has strong influence on the preferential nucleation of Ge islands at the flat bottom of the pits.Comment: 19 pages, 7 figure

    A new model for the double well potential

    Full text link
    A new model for the double well potential is presented in the paper. In the new potential, the exchanging rate could be easily calculated by the perturbation method in supersymmetric quantum mechanics. It gives good results whether the barrier is high or sallow. The new model have many merits and may be used in the double well problem.Comment: 3pages, 3figure

    Exploring the quantum critical behaviour in a driven Tavis-Cummings circuit

    Full text link
    Quantum phase transitions play an important role in many-body systems and have been a research focus in conventional condensed matter physics over the past few decades. Artificial atoms, such as superconducting qubits that can be individually manipulated, provide a new paradigm of realising and exploring quantum phase transitions by engineering an on-chip quantum simulator. Here we demonstrate experimentally the quantum critical behaviour in a highly-controllable superconducting circuit, consisting of four qubits coupled to a common resonator mode. By off-resonantly driving the system to renormalise the critical spin-field coupling strength, we have observed a four-qubit non-equilibrium quantum phase transition in a dynamical manner, i.e., we sweep the critical coupling strength over time and monitor the four-qubit scaled moments for a signature of a structural change of the system's eigenstates. Our observation of the non-equilibrium quantum phase transition, which is in good agreement with the driven Tavis-Cummings theory under decoherence, offers new experimental approaches towards exploring quantum phase transition related science, such as scaling behaviours, parity breaking and long-range quantum correlations.Comment: Main text with 3 figure

    Entanglement distribution maximization over one-side Gaussian noisy channel

    Full text link
    The optimization of entanglement evolution for two-mode Gaussian pure states under one-side Gaussian map is studied. Even there isn't complete information about the one-side Gaussian noisy channel, one can still maximize the entanglement distribution by testing the channel with only two specific states
    corecore