188 research outputs found

    Prebiotic and synbiotic effects on rats fed malted barley with selected bacteria strains.

    Get PDF
    Butyric acid, one of the key products formed when β-glucans are degraded by the microbiota in the colon, has been proposed to be important for colonic health. Glutamine bound to the fibre may have similar effects once it has been liberated from the fibre in the colon. Both β-glucans and glutamine are found in high amounts in malted barley. Lactobacillus rhamnosus together with malt has been shown to increase the formation of butyric acid further in rats

    Synthesis of ultrathin platinum nanoplates for enhanced oxygen reduction activity.

    Get PDF
    Ultrathin Pt nanostructures exposing controlled crystal facets are highly desirable for their superior activity and cost-effectiveness in the electrocatalytic oxygen reduction reaction (ORR), and they are conventionally synthesized by epitaxial growth of Pt on a limited range of templates, such as Pd nanocrystals, resulting in a high cost and less structural diversity of the ultrathin Pt nanostructures. To solve this problem, we demonstrate that ultrathin Pt nanostructures can be synthesized by templating conveniently available Ag nanocrystals without involving galvanic replacement, which enables a much-reduced cost and controllable new morphologies, such as ultrathin Pt nanoplates that expose the {111} facets. The resulting ultrathin Pt nanoplates are ∼1-2 nm in thickness, which show an ∼22-fold increase in specific activity (5.3 mA cm-2), an ∼9.5-fold increase in mass activity (1.62 A mg-1) and significantly enhanced catalytic stability in the ORR, compared with the commercial Pt/C catalyst. We believe this strategy opens a door to a highly extendable family of ultrathin noble metal nanostructures, thus promising excellent activity and stability in a broad range of catalytic applications

    Self-assembly of noble metal nanoparticles into sub-100 nm colloidosomes with collective optical and catalytic properties.

    Get PDF
    Self-assembly at the nanoscale represents a powerful tool for creating materials with new structures and intriguing collective properties. Here, we report a novel strategy to synthesize nanoscale colloidosomes of noble metals by assembling primary metal nanoparticles at the interface of emulsion droplets formed by their capping agent. This strategy produces noble metal colloidosomes of unprecedentedly small sizes (<100 nm) in high yield and uniformity, which is highly desirable for practical applications. In addition, it enables the high tunability of the composition, producing a diversity of monometallic and bimetallic alloy colloidosomes. The colloidosomes exhibit interesting collective properties that are different from those of individual colloidal nanoparticles. Specifically, we demonstrate Au colloidosomes with well-controlled interparticle plasmon coupling and Au-Pd alloy colloidosomes with superior electrocatalytic performance, both thanks to the special structural features that arise from the assembly. We believe this strategy provides a general platform for producing a rich class of miniature colloidosomes that may have fascinating collective properties for a broad range of applications

    Direct observation of magnon-phonon coupling in yttrium iron garnet

    Get PDF
    The magnetic insulator yttrium iron garnet (YIG) with a ferrimagnetic transition temperature of ∼\sim560 K has been widely used in microwave and spintronic devices. Anomalous features in the spin Seeback effect (SSE) voltages have been observed in Pt/YIG and attributed to the magnon-phonon coupling. Here we use inelastic neutron scattering to map out low-energy spin waves and acoustic phonons of YIG at 100 K as a function of increasing magnetic field. By comparing the zero and 9.1 T data, we find that instead of splitting and opening up gaps at the spin wave and acoustic phonon dispersion intersecting points, magnon-phonon coupling in YIG enhances the hybridized scattering intensity. These results are different from expectations of conventional spin-lattice coupling, calling for new paradigms to understand the scattering process of magnon-phonon interactions and the resulting magnon-polarons.Comment: 5 pages, 4 figures, PRB in pres

    mTreeIllustrator: A Mixed-Initiative Framework for Visual Exploratory Analysis of Multidimensional Hierarchical Data

    Get PDF
    Multidimensional hierarchical (mTree) data are very common in daily life and scientific research. However, mTree data exploration is a laborious and time-consuming process due to its structural complexity and large dimension combination space. To address this problem, we present mTreeIllustrator, a mixed-initiative framework for exploratory analysis of multidimensional hierarchical data with faceted visualizations. First, we propose a recommendation pipeline for the automatic selection and visual representation of important subspaces of mTree data. Furthermore, we design a visual framework and an interaction schema to couple automatic recommendations with human specifications to facilitate progressive exploratory analysis. Comparative experiments and user studies demonstrate the usability and effectiveness of our framework

    Genome-wide analysis of regulatory proteases sequences identified through bioinformatics data mining in Taenia solium

    Get PDF
    Background Cysticercosis remains a major neglected tropical disease of humanity in many regions, especially in sub-Saharan Africa, Central America and elsewhere. Owing to the emerging drug resistance and the inability of current drugs to prevent re-infection, identification of novel vaccines and chemotherapeutic agents against Taenia solium and related helminth pathogens is a public health priority. The T. solium genome and the predicted proteome were reported recently, providing a wealth of information from which new interventional targets might be identified. In order to characterize and classify the entire repertoire of protease-encoding genes of T. solium, which act fundamental biological roles in all life processes, we analyzed the predicted proteins of this cestode through a combination of bioinformatics tools. Functional annotation was performed to yield insights into the signaling processes relevant to the complex developmental cycle of this tapeworm and to highlight a suite of the proteases as potential intervention targets. Results Within the genome of this helminth parasite, we identified 200 open reading frames encoding proteases from five clans, which correspond to 1.68% of the 11,902 protein-encoding genes predicted to be present in its genome. These proteases include calpains, cytosolic, mitochondrial signal peptidases, ubiquitylation related proteins, and others. Many not only show significant similarity to proteases in the Conserved Domain Database but have conserved active sites and catalytic domains. KEGG Automatic Annotation Server (KAAS) analysis indicated that ~60% of these proteases share strong sequence identities with proteins of the KEGG database, which are involved in human disease, metabolic pathways, genetic information processes, cellular processes, environmental information processes and organismal systems. Also, we identified signal peptides and transmembrane helices through comparative analysis with classes of important regulatory proteases. Phylogenetic analysis using Bayes approach provided support for inferring functional divergence among regulatory cysteine and serine proteases. Conclusion Numerous putative proteases were identified for the first time in T. solium, and important regulatory proteases have been predicted. This comprehensive analysis not only complements the growing knowledge base of proteolytic enzymes, but also provides a platform from which to expand knowledge of cestode proteases and to explore their biochemistry and potential as intervention targets

    New mitogenomes in deep-water endemic Cocculinida and Neomphalida shed light on lineage-specific gene orders in major gastropod clades

    Get PDF
    Gastropoda is the most speciose class in Mollusca, the second largest animal phylum, whose internal relationships remain largely unsettled, partly due to the insufficient data from key deep-water endemic lineages, such as the subclass Neomphaliones. Neomphaliones currently includes two orders: Cocculinida, best known from sunken wood habitats, and Neomphalida, best known from hydrothermal vents and often referred to as the ‘hot vent clade’. Phylogenetic controversy has also been observed in this subclass across different studies, requesting additional investigations. Here, we assembled nine new mitogenomes from two cocculinids and seven neomphalines and analyzed them with published gastropod mitogenomes, with a particular focus on Neomphaliones. The phylogenetic reconstruction of Gastropoda based on 13 mitochondrial protein-coding genes resulted in a topology largely congruent with previous reconstructions based on morphological characters. Furthermore, we recovered characteristic mitochondrial gene order arrangements of Cocculinida and Neomphalida compared to the hypothetical ancestral gastropod gene order, at a level similar to other subclass-level clades. Divergence time estimation showed that Cocculinida and Neomphalida diverged approximately 322.68 million years ago. In addition to characteristic gene order arrangements for the clade, cocculinid mitogenomes also exhibit some minor rearrangements even among congeners. Within Neomphalida, our tree adds support to monophyletic Peltospiridae and Neomphalidae, with unique gene arrangement recovered for each family. Our results offer new insights into the rearrangement of mitogenomes in Gastropoda, providing another clue to the evolutionary history of gastropods

    Effects of Differently Processed Carrots on Ulcerative Colitis in Mice

    Get PDF
    The incidence of ulcerative colitis (UC) has been increasing in recent years. Due to the limitations of traditional drug therapies for UC, natural foods that can prevent this disease and alleviate its symptoms are becoming a research hot topic, but the effects of processing methods on their activity remain unknown. Therefore, the effects of three different processing methods (pulping, high-temperature cooking, and fermentation) on carotenoid and dietary fiber contents as well as carotenoid bioaccessibility in carrots were explored in this study. C57BL/6J mice were used to create a mouse model of UC induced by dextran sulfate sodium (DSS) and the mice received dietary intervention with freeze dried powder of carrots (5.05%, on a dry mass basis) for 14 days. Body mass change, disease activity index (DAI) and colon parameters (length, pathology, inflammatory factors, oxidative stress level, goblet cell number, tight junction protein expression, and short-chain fatty acid content) were analyzed to evaluate the effects of three differently processed carrots on UC. The results showed compared with pulping, high-temperature cooking and fermentation significantly decreased the soluble, insoluble and total dietary fiber contents of carrots (P < 0.05), increased the bioaccessibility of carotenoids (P < 0.05), while fermentation significantly increased the proportion of soluble dietary fiber in total dietary fiber (P < 0.05). Compared with the model group, all processed carrots could significantly inhibit the change of body mass loss and DAI (P < 0.05), decrease the levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 (P < 0.05), increase the level of IL-10 (P < 0.05), and up-regulate the expression of tight junction proteins (ZO-1, claudin-1, and occludin) (P < 0.05). High-temperature cooked or fermented carrots could significantly alleviate colon shortening (P < 0.05), and relieve the pathological damage of colon tissue (P < 0.05). Meanwhile, fermented carrots could significantly inhibit the production of malondialdehyde (MDA) (P < 0.05), improve the decrease in the number of goblet cells (P < 0.05), increase the level of butyric acid (P < 0.05) and possess the best inhibitory effect on IL-6 production. In summary, differently processed carrots could ameliorate ulcerative colitis to different extends, the most pronounced effect being observed with fermented carrots
    • …
    corecore