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RESEARCH ARTICLE Open Access

Genome-wide analysis of regulatory proteases
sequences identified through bioinformatics
data mining in Taenia solium
Hong-Bin Yan1,2*, Zhong-Zi Lou1, Li Li1, Paul J Brindley2, Yadong Zheng1, Xuenong Luo1, Junling Hou1,
Aijiang Guo1, Wan-Zhong Jia1* and Xuepeng Cai1*

Abstract

Background: Cysticercosis remains a major neglected tropical disease of humanity in many regions, especially in
sub-Saharan Africa, Central America and elsewhere. Owing to the emerging drug resistance and the inability of
current drugs to prevent re-infection, identification of novel vaccines and chemotherapeutic agents against Taenia
solium and related helminth pathogens is a public health priority. The T. solium genome and the predicted
proteome were reported recently, providing a wealth of information from which new interventional targets might
be identified. In order to characterize and classify the entire repertoire of protease-encoding genes of T. solium,
which act fundamental biological roles in all life processes, we analyzed the predicted proteins of this cestode
through a combination of bioinformatics tools. Functional annotation was performed to yield insights into the
signaling processes relevant to the complex developmental cycle of this tapeworm and to highlight a suite of the
proteases as potential intervention targets.

Results: Within the genome of this helminth parasite, we identified 200 open reading frames encoding proteases
from five clans, which correspond to 1.68% of the 11,902 protein-encoding genes predicted to be present in its
genome. These proteases include calpains, cytosolic, mitochondrial signal peptidases, ubiquitylation related proteins,
and others. Many not only show significant similarity to proteases in the Conserved Domain Database but have
conserved active sites and catalytic domains. KEGG Automatic Annotation Server (KAAS) analysis indicated that
~60% of these proteases share strong sequence identities with proteins of the KEGG database, which are involved
in human disease, metabolic pathways, genetic information processes, cellular processes, environmental information
processes and organismal systems. Also, we identified signal peptides and transmembrane helices through
comparative analysis with classes of important regulatory proteases. Phylogenetic analysis using Bayes approach
provided support for inferring functional divergence among regulatory cysteine and serine proteases.
(Continued on next page)
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Conclusion: Numerous putative proteases were identified for the first time in T. solium, and important regulatory
proteases have been predicted. This comprehensive analysis not only complements the growing knowledge base
of proteolytic enzymes, but also provides a platform from which to expand knowledge of cestode proteases and to
explore their biochemistry and potential as intervention targets.

Keywords: Proteases, Taenia solium, Drug target, Vaccine candidate antigen, Genome-wide analysis, Cysticercosis,
Platyhelminth

Background
Taeniosis and cysticercosis caused by adult and larval stages
of the Taenia solium (Platyhelminthes: Cestoda, Cyclophyl-
lidea, Taeniidae) parasite, respectively, remain important
parasitic diseases and a major health and economic burdens
in less developed countries. Moreover, these infectious dis-
eases also are increasingly seen in more developed coun-
tries because of immigration from endemic areas where
pigs are reared and pork is consumed [1]. T. solium has a
complex, two-host developmental cycle. Humans are the
only definitive host - harboring the adult tapeworm, which
result in taeniasis, whereas pigs, humans and other mam-
mals can serve as intermediate hosts for the larval (cysticer-
cus) form [2,3]. Infection of the human nervous system by
the cysticercus leads to neurocysticercosis with the symp-
toms of acquired epilepsy and seizure.
Therapeutic measures available to treat neurocysticerco-

sis include steroids, treatments for symptoms, surgery, and
antiparasitic drugs to kill cysticerci in the central nervous
system, muscles, and other sites. By contrast, infection of
the human small intestine by the adult developmental stage
of tapeworm is usually asymptomatic, and readily treated
with the oral medication praziquantel. However, attempts
to date to control transmission of the parasite have often
been poorly effective and not sustainable [1-3].
Over the past decade, research has been undertaken to

develop vaccines and novel chemotherapeutic agents for use
in pigs to prevent and control transmission of T. solium.
Whereas noteworthy progress has been made [3-6], no ideal
vaccine is currently available for immunization to prevent in-
fection of porcine or human populations at risk of infection.
The screening and identification of ideal surface receptors or
other proteins as molecular targets is the key step for the de-
velopment of effective prevention and control strategy. Since
the oncosphere stage that is released from the egg in the
small intestine of the pig (or human) and which is then acti-
vated by the action of intestinal enzymes and bile salts is the
first stage determining the infection success in their inter-
mediate host, the identification of oncospheral antigens rep-
resents a key step to clarify their specific roles in the biology
of the parasite–host relationship. In recent years, an antigen
termed TSOL18 has proven to be effective as an immuno-
gen in trials and naturally acquired infection with T. solium
in pigs [4-6]. No new vaccines or drugs against cysticercosis,

however, have been registered in recent years [1]. Accord-
ingly, it is sensible to explore and seek novel molecular tar-
gets and their potential for vaccines and chemotherapeutic
agents to block transmission of this cestode.
Proteases have been examined in depth in immunological

or chemotherapeutic studies aiming to develop anti-
protozoa agents; this focus relates to the critical roles pro-
teolytic enzymes play in the developmental cycles of the
parasites [7]. Moreover, proteases are important regulatory
elements in all cells [8,9]. They also play a key role as effec-
tors of virulence in pathogens through converting host sig-
nal transduction and modifying the immune response
[10-13]. However, few proteolytic enzymes have been iden-
tified or characterized for functions and interactions in T.
solium and other cestodes (Cestoda).
Although five main catalytic classes of proteases have

been identified from activated oncospheres in vitro of T.
solium by proteomic analysis, only several have been de-
scribed in depth [14]. Three proteases of T. solium have
been named and classified in MEROPS database; among
them, a cDNA encoding TsCL-1 - cathepsin L-like cyst-
eine protease from the T. solium metacestode has been
identified and the biochemical properties of the recombin-
ant enzyme characterized [15]. Few proteases have been
investigated for the potential to serve as chemotherapeutic
targets or vaccine candidates against cysticercosis [15-20].
The newly available genome sequences of T. solium pro-

vide new avenues to discover novel vaccine candidates or
therapeutic targets [21]. These abundant new data com-
bined with specialized databases and bioinformatics tech-
niques should accelerate the identification of anti-cestode
agents, not the least by supplementing current proteomic
identification techniques [22]. With this backdrop, here we
investigated the T. solium genome for protease genes to
provide first foundation of characterizing some potential
targets. We identified numerous proteases in this cestode,
many of which may have critical functions and hence be
targeted with novel interventions.

Results and discussion
Together, 200 predicted proteases belonging to 37 families
were identified, excluding the inactive homologs or pseu-
dogenes (Table 1; Additional file 1). The proteases consti-
tute 1.68% of the 11,902 predicted protein-encoding genes
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of T. solium. There are currently three known or putative
proteases identified in T. solium in the MEROPS database
[15]. Proteases of five classes were characterized: 12%,
25%, 34.5%, 20.5%, and 8% for aspartic, cysteine, metallo-,
serine, and threonine proteases, respectively. These pro-
portions are consistent with other organisms [12,23]. This
study provided an exponential expansion in numbers of
putative proteases from T. solium: more than 98% of the
genes reported here are new.
The genome of the human blood fluke Schistosoma

mansoni and the model nematode Caenorhabditis elegans
are well characterized and annotated; there are 196 S.
mansoni and 369 C. elegans known or putative proteases
in the MEROPS database. Moreover, a recent in depth
critical analysis indicated the presence of at least 255 pro-
teases in S. mansoni [12]. While the proteases proportions
of each class are approximately equal, we observed that an
obvious expansion in the relative proportion of aspartic
proteases in T. solium compared to S. mansoni and C. ele-
gans, a modest expansion of threonine proteases and a
slight reduction of serine proteases in T. solium (Table 2).
In general, these kinds of differences may result from evo-
lutionary divergence, ecology, developmental life cycles
and other aspects among species; e.g. C. elegans is a free
living nematodes, S. mansoni is an obligate parasite of
humans, and T. solium is a cyclophyllidean cestode. Dif-
ferences among these three species, however, may also
partially be due to the coverage and sequence quality of
the genomes.

Most of the protein sequences, which have high sequence
identity with those well-described protease in MEROPS
database, were confirmed as having a conserved protease-
specific domain (Additional file 1). Among them, we were
able to assign orthology and KEGG (Kyoto Encyclopedia of
Genes and Genomes) functional pathways to 117T. solium
proteases using KAAS analysis (Figure 1; the full annotation
of KEGG pathways available in Additional file 2). Thirty-
seven proteases were predicted engage in human pathogen-
esis, while 24 were predicted to be involved in metabolic
pathways. Twenty-one proteases were predicted to be in-
volved in cellular processes such as energy transport, cell
cycle and communication, 19 proteases may play roles in
genetic information processes and eight proteases likely
perform functions in environmental information processes
and organismal systems. Although almost all the proteases
identified here have active sites, we caution that none have
been shown experimentally to be catalytically active. We fo-
cused our discussion on several important regulatory prote-
ases, observed for the first time in T. solium because this
aspect offers obvious potential for targets of novel chemo-
therapies or the candidates for new vaccines [24,25].

Aspartic proteases
Aspartic proteases are important hydrolytic enzymes in me-
dicinal chemistry because many of their members have be-
come therapeutic targets for HIV/AIDS, Alzheimer’s disease,
and other conditions. The catalytic activity of these pro-
teins is driven by the Asp dyad, a pair of active site resi-
dues Asp residues participating in the hydrolysis of the
substrate [26]. Twenty-four loci encoding aspartic pro-
teases belonging to four families were identified in the
tapeworm (Additional file 1). In family A2, 18 aspartic
proteases were found. Among these 18, by using two
prediction methods, TMMOD and TMHMM, we predicted
that two proteases contained signal peptide sequences, and
two proteases possessed a signal transmembrane (TM) do-
main. In family A1, we identified a single cathepsin D-like
aspartic protease (LongOrf.asmbl_10039 Scaffold00045)
that contains a signal peptide sequence. This hydrolase
did not appear to include TM domains (Table 1;
Additional file 1). All members of the family A2 have

Table 1 Overview of characteristics of putative protease sequences encoded by the genome of Taenia solium

Protease
class

Numbers of
sequences

Numbers of
families

Proteases with predicted transmembrane helices Proteases with
signal sequenceTMMOD TMHMM

Aspartic 24 2 2 2 3

Cysteine 50 9 3 6 5

Metallo 69 16 17 19 11

Serine 41 8 18 19 13

Threonine 16 2 0 0 2

Totals 200 37 40 46 34

Table 2 Proportions of protease families in the genomes of
Taenia solium, Schistosoma mansoni and Caenorhabditis
elegans

Protease class T. solium (%) S. mansoni (%) C. elegans (%)

Aspartic 12 4 5

Cysteine 25 27 20

Metallo 34.5 39 41

Serine 20.5 24 29

Threonine 8 6 5

Totals 100 100 100
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the highly conserved sequence and same active site. The
active site of aspartic acid residues occur within a motif
(Asp-Thr/Ser-Gly), in like fashion to pepsin [27,28].
Secreted aspartic proteases (Saps) are common in eukary-

otes. These kinds of enzymes represent the major virulence
factors in human candidiasis and other fungal diseases, and
participate in a wide range of fungal physiological processes
as well as other fungal-host interactions. Saps are potential
targets for the development of novel anti-fungal drugs [29].
In addition, aspartic proteases have attracted a great deal of
interest as drug targets for malaria (Plasmodium falcip-
arum) and related other protozoal diseases [30]. Both schis-
tosomes and hookworms deploy cathepsin D within the gut
of the adult worms to digest hemoglobin released from
ingested host blood cells [31]. Although related information
for functions of aspartic proteases cestodes is not yet avail-
able, the findings presented here provide insights on de-
signs for novel drugs for cysticercosis and taeniasis.

Cysteine proteases
Cysteine proteases play indispensable roles in cell biology
of parasites [32,33], but their functions in cestodes remain
poorly characterized. Important parasite proteases are
grouped among family C1 (cathepsin B and cathepsin L-
like), family C2 (calpain-like) and other families [34]. Based
on significant similarity to known cysteine proteases, 50 loci
were detected in this study, of which 10% (5/50) had an
identifiable signal sequence and thus are accessible to the
secretory pathway. There was a slight discrepancy between
the two TM domain prediction algorithms: TMMOD
found a TM domain in three cysteine proteases, whereas
TMHMM detected a TM domain in six members of
this catalytic class (Table 1). In family C1, eight proteases
were observed that contain cysteine-type cathepsin activity
known to be involved in digestion of host proteins [35]
(Additional file 1). Two of these loci encoded the cathepsin
B domain. Cathepsin L-like cysteine proteases from the

metacestode stage of T. solium induce serological responses
during cysticercosis [15]; further investigation is recom-
mended to establish their value of vaccine candidates [15].
Other studies have demonstrated that cathepsin B proteases
play critical roles in the physiology of the carcinogenic liver
fluke Opisthorchis viverrini [36], and related family enzymes
can be targeted for development of therapeutic inhibitors
or vaccination for control of fasciolosis [37].
Phylogenetic relationships of C1 proteases (cathepsins)

were analyzed using the orthologues from human, mouse,
Drosophila melanogaster, C. elegans, S. mansoni, S. japoni-
cum Echinococcus multilocularis, T. solium and three add-
itional Taenia species - T. saginata, T. asiatica, and T.
pisiformis. Phylogenetic trees revealed six proteases in T.
solium that are cathepsin L or cathepsin L-like, and two
proteases that are cathepsin B-like. However, cathepsin F
proteases were not observed in putative proteome of T.
solium. It is clear that two T. solium proteases (Scaf-
fold00002.gene342, and LongOrf.asmbl 1043) are cathepsin
B-like proteases, and one of them is closely related to the
cathepsin B-like peptidase of E. multilocularis (EmCBP1:
E9RH13). These cathepsin B-like proteases constitute a
clade within the papain-like cysteine protease family, in-
cluding homologues from schistosomes, C. elegans (CPR6,
CPR3, CPR5 and CPZ1), human and mouse (CATB and
CATZ), which is consistent with that of the CDD analysis.
Six T. solium C1 proteases are cathepsin L or cathepsin L-
like cysteine peptidases; among them, one protease (Long-
Orf.asmbl 6319) has a close relationship with a cathepsin L-
like protease of the fruit fly (Q95029), and cathepsin L of
human (such as CATS: P25774, CATK: P43235, CATL:
P07711) and mouse (such as CATS: NP_001254624, CATK:
P55097, CATL: P06797, CATM: Q9JL96, and so on). Four
T. solium proteases clustered with CATL (cathepsin L-like
cysteine peptidase) of T. saginata, T. asiatica, T. pisiformis
and E. multilocularis, which deviates slightly from two T.
solium proteases (Scaffold00009.gene1353 and LongOrf.

Figure 1 KEGG pathway interactions for predicted proteases of the tapeworm, Taenia solium. Graphic showing the relative proportions of
proteases engaged in diverse signal processes and pathways. (Detailed information is provided in Additional file 2).
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asmbl 6319). These cathepsin L or cathepsin L-like proteases
and cathepsin H of mouse and human branched together in
a clade discrete from cathepsin F. Although the remaining
three C1 cysteine proteases (LongOrf.asmbl_24428 Scaf-
fold01127, Scaffold00212. gene8293, LongOrf.asmbl_24242
Scaffold00809) are not included in the phylogenetic ana-
lysis because their sequences were truncated apparently, it
indicated a functional divergence among these T. solium
C1 proteases (Figure 2).

In addition to digestive enzymes characterized as ca-
thepsins, other abundant regulatory cysteine proteases
identified in the genome of T. solium included calpain
and caspase proteases. Calpain proteases are important
calcium-dependent proteases that belong to the C2 family.
Here we observed six members of the C2 family in the
T. solium genome. Calpains perform a variety of functions
in cytoskeletal remodeling processes, cell differentiation,
apoptosis, and signal transduction [38]. Although reports

Figure 2 Inferred phylogenetic relationships based on amino acid sequences of selected C1 family proteases. The proteases of Taenia
solium identified here are indicated with black triangle. Posterior support values are given at node (posterior probability >50%).
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on vaccine efficacy of calpain in tapeworm infections have
yet to be published, calpains are under investigation as
vaccine candidates against S. japonicum and S. mansoni
where reductions in worm burden and egg production
have been achieved by immunization [39,40].
Caspases (interleukin-1 beta converting enzyme [ICE]

homologues; cysteine-dependent aspartate-directed prote-
ases) are well known for their roles in apoptosis (pro-
grammed cell death) in a wide range of organisms,
including in platyhelminths [41-44]. In addition, inflam-
matory caspases mediate inflammation, immunity, and
maturation and differentiation of certain cells including
microglia and keratinocytes [45]. Despite a large overlap,
caspases can be classified into three types: (1) initiator cas-
pases participate in the upstream steps of the signaling
cascade and can activate other signaling proteins, (2) ef-
fector caspases, which can lyse cellular proteins directly
and this process ultimately results in classical signs of
apoptosis, and (3) pro-inflammatory caspases, which acti-
vate the inflammatory cytokines [46]. Six T. solium cas-
pases were identified here, and five have the conserved
active site of Ala-Cys and/or His-Gly (Additional file 1). In
comparison, S. mansoni has four caspases loci, of which
exhibit conserved catalytic residues. C. elegans has four
caspase loci, three of which have conserved catalytic resi-
dues. Induction of apoptosis in developing embryos is a
potential approach for therapeutic intervention against
nematodes [47]. Caspases are important regulatory pro-
teins and are targets of chemotherapeutic agents against
several diseases [48,49].
We putatively identified 4 and 21 members of the C12

and C19 families of cysteine proteases, respectively. The
C12 and C19 families also contain biochemically import-
ant enzymes containing ubiquitin hydrolase, which inter-
acts with ubiquitin (Ub). Ubiquitin carboxyl-terminal
hydrolase (UCH) proteins (e.g. UCH37) are involved in
the deubiquitinating activity in the 19S or 26S proteasome
regulatory complex. UCH enzymes play a crucial role in
signaling pathways and in cell-cycle regulation [50]. These
intracellular peptidases remove ubiquitin from polyubiqui-
nated peptides by cleavage of isopeptide bonds. They
hydrolyze bonds involving the carboxyl group of the C-
terminal Gly residue of ubiquitin. De-ubiquitination edits
the ubiquitin conjugates, which may ensure rescue from
degradation, as well as recycling of the ubiquitin. The ubi-
quitin/proteasome system is responsible for most protein
turnover in the mammalian cell [51,52].

Metalloproteases
Metalloproteases are highly conserved in evolution. They
mediate the hydrolysis of bioactive peptides and extracel-
lular matrix proteins. Metalloproteases require metal (usu-
ally zinc) ions for catalysis. A full-length cDNA termed
TsSte24p has been reported, which appeared to encode a

type I CaaX protease of the T. solium metacestode (TsM).
The TsSte24p gene occurs as a single copy within the TsM
genome, is constitutively expressed from metacestode to
adult stages, and shares significant sequence identity with
the type I CaaX protease of Saccharomyces cerevisiae
Ste24p and C. elegans CeFACE-1 [53,54]. Here, we deter-
mined that metalloproteases contribute a large proportion
of proteolytic enzymes in the T. solium genome – 69 loci
were identified. 16% of these metalloproteases contained
signal sequences and 27% exhibited one or more trans-
membrane alpha helices, indicating that these tapeworm
metalloproteases are membrane bound (Table 1).
Our analysis indicated that 11 members of the M1 family

are encoded by the tapeworm genome. Family M1 metallo-
proteases are dependent on a single zinc ion for activity,
and all members of this family cleave the N-terminus resi-
dues of polypeptides. Indeed, many are aminopeptidases.
The catalytic zinc ion is bound by two histidines and a glu-
tamate. The histidines are situated within the HEXXH
motif on one long helix with the glutamate on another anti-
parallel helix. The catalytic mechanism involves activation
of a water molecule by the zinc ion. The glutamate of
HEXXH is critical for catalysis and a tyrosine may also be
involved [55]. The insect aminopeptidase A is the receptor
for the insecticidal CrylAc toxin of Bacillus thuringiensis
[56]. Similar studies have not yet been reported on these
types of proteases in tapeworms, and their physiological
roles in T. solium remain to be determined.
Numerous proteins operate in the mitochondria. The

mitochondrial intermediate protease (MIP) and mitochon-
drial processing protease (MPP) often function in concert
to cleave transit peptides from immature mitochondrial
proteins synthesized in the cytoplasm [12,57]. We identi-
fied a peptidase MIP belonging to the M3 superfamily.
Like other metalloproteases in subclan MA (E), the mem-
bers in the family M3 contain the HEXXH motif that
forms the active site in conjunction with a carboxyl Glu
residue. A single zinc ion is ligated by the sidechains of
the two His residues, and the more COOH-terminal Glu.
The members of the family M3 catalyze various peptidase
reactions, including an unusual form of endopeptidase ac-
tivity that is restricted to substrates of less 19 amino acid
residues, with a particular preference for scission proximal
to the C-terminus [58]. Another form of MIP peptidase
that cleaves N-terminal octapeptides from proteins during
import into the mitochondrion differs from bacterial
peptidyl-dipeptidase Dcp and liberates C-terminal dipep-
tides [59].
ATP-dependent mitochondrial proteases are known to

possess a wide variety of cellular associated activities. They
play an essential role in quality control, turnover, and as-
sembly of the respiratory chain complex proteins [60].
Three members of ATP-dependent proteases of the M41
family were identified in the genome of T. solium, and three
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contained an ATP binding motif with a conserved ATP
binding site. Although related functions have not been de-
scribed in T. solium, earlier reports demonstrated that
metalloprotease inhibitors can cause paralysis of adult
worms of S. mansoni [61], in similar fashion to humans
and mice.
M50 family proteases contain metallo-endopeptidases,

including the mammalian S2P [sterol regulatory element-
binding protein (SREBP) Site-2 protease, S2P] proteases
(subfamily M50B), and bacterial SpoIVFB (subfamily
M50A). In this study, we observed one protease of the
M50A subfamily possess the HEXXH catalytic motif
(LongOrf.asmbl_14141 Scaffold00087). There are presum-
ably six transmembrane helices (using TMHMM method)
within this protease, in which the putative active site is lo-
cated in the third transmembrane helix (around residues
175–195; Additional file 1). This result is consistent with
previous reports that cleavages catalyzed by members of
family M50 occur within or close to membranes [62].
S2P peptidase cleaves a Leu-Cys bond in the first trans-
membrane helix of the substrate through releasing the
N-terminal transcription factor domain from membrane-
bound SREBPs [63].

Serine proteases
Forty-one serine proteases were predicted encoded
within the genome of T. solium. They were classified
into eight families. Thirteen loci were predicted to have
one signal sequence, and five and four of them belong to
the S1 and S8 family, respectively, in accord with the
general understanding that the major members of S1
family proteases enter the secretory pathway via an N-
terminal signal sequence. Nineteen of the serine prote-
ases of T. solium possess at least one transmembrane
alpha helix predicted by TMHMM (Table 1). The mem-
bers in the S1 family of proteases possess a broad range
of functions. Almost all S1 family members contain the
catalytic triad His, Asp and Ser residues [64]. Although
the catalytic serine residue is conserved for this protein
among most vertebrates, previous studies have deter-
mined that the serine has been replaced by threonine in
some not-peptidase paralogues, for example in human
testes-specific protein TSP50 [65]. There are also many
other non-peptidase homologues in which catalytic resi-
dues have been replaced [66].
Within family S1, there are three main types of protease

activity: 1) trypsin-like, where there is cleavage of amide sub-
strates following Arg or Lys at P1 position; 2) chymotrypsin-
like, where cleavage occurs following one of the hydrophobic
amino acids at P1; and 3) elastase-like, with cleavage follow-
ing an Ala at P1. These enzymes are usually synthesized as
inactive precursor zymogens that are cleaved to generate
their active forms in the case of activation sites being recog-
nized during limited proteolysis. Nine S1 proteases were

identified in T. solium; however, two of them did not ex-
hibit significant similarity to the conserved protease do-
main (Additional file 1). Moreover, sequence alignment
showed that four of these predicted proteins (LongOrf.
asmbl_11010 Scaffold00053, Scaffold00011. gene1492
Scaffold00011, Scaffold00036.gene3378 Scaffold00036,
Scaffold00158. gene7407 Scaffold00158) have the con-
served catalytic triad of His, Asp, and Ser. It is notable
that Ser was replaced by Thr in one hydrolase (Scaf-
fold00063.gene4723 Scaffold00063), as occurs in the hu-
man TSP50 protease [65] (Additional files 1 and 3). These
five proteases are trypsin-like serine proteases. Phylogen-
etic relationships of S1 proteases were analyzed using in-
formative orthologues from human, mouse, Drosophila, C.
elegans, Schistosoma and T. solium. One tapeworm prote-
ase (Scaffold00158. gene7407) clustered with TRY4 and
TRY5 of C. elegans, and constituted an independent clade
with other two proteases (LongOrf.asmbl 11010 and Scaf-
fold00063. gene4723). Two other T. solium S1 proteases
(Sscaffold00011. gene1492 and Sscaffold00036. gene3378)
grouped adjacent to complement factor I light chain
(P05156) and Complement C1r subcomponent-like protein
(Q9NZP8) of human, TRY3 (NP_500999) of C. elegans and
related schistosome enzymes. Although it is premature to
define the functions of these five T. solium S1 proteases
through the phylogenetic analysis, these results indicated
that functional divergence might exist among the S1 prote-
ases in T. solium (Figure 3).
Among the S1A subfamily, two proteases containing

several LDLa (Low Density Lipoprotein Receptor Class
A) domains were observed. LDLa is a cysteine-rich re-
peat domain that plays a central role in metabolism of
mammalian cholesterol, especially during the receptor
protein binds LDL [67]. It enters the cell by endocytosis
[68]. Successive cysteine-rich repeats of ~ 40 residues
are located at the amino-terminus of this multi-domain
membrane protein. Here we observed that two putative
proteases (Scaffold00025.gene2771 Scaffold00025 and
Scaffold00005.gene846 Scaffold00005) contained 3 and
17 LDLa domains, respectively. These proteases might
play a central role in cholesterol metabolism in this
tapeworm. For the LDLa domain, the binding of cal-
cium is required for in vitro formation of the native di-
sulfide isomer and is necessary in establishment and
maintenance of the modular structure [69].
In addition, two proteases from the S1B subfamily con-

taining PDZ domains (Additional file 1) were present. One
shares identity with cd00987 subfamily (CDD) and the
other with cd00992 subfamily (CDD). PDZ domains occur
in a variety of eumetazoan signaling molecules, often in
tandem arrangements. The domains may be responsible
for specific protein-protein interactions because most of
them can bind to C-terminal polypeptides, internal (non-
C-terminal) polypeptides and even lipids. In the cd00987
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subfamily, protease-associated PDZ domains of C-terminal
beta-strand form the peptide-binding groove base, a circu-
lar permutation with respect to PDZ domains was ob-
served in signaling proteins, whereas in cd00992, the
peptide-binding groove base is formed from N-terminal
beta-strand [70,71]. Six tapeworm members in the S41
family also contained the PDZ domain.
Members of peptidase family S8 include the serine endo-

peptidase subtilisin, which has a catalytic mechanism that is

distinct from typical chymotrypsins. The S8 family has an
Asp/His/Ser catalytic triad similar to that in trypsin-like
proteases, but does not share the three-dimensional struc-
ture and is not homologous to trypsin. In the S8 family,
serine acts as a nucleophile, aspartate as an electrophile,
and histidine as a base, as members in the S1, S9 and S10
families [55]. The S8 family includes two subfamilies, sub-
tilisin and kexin being type-examples for subfamily S8A
and S8B, respectively. Tripeptidyl-peptidase II (TPP-II) is

Figure 3 Phylogenetic tree inferred from amino acid sequences of selected S1 family proteases. The proteases of Taenia solium identified
here are indicated with black triangle. Posterior support values are given at node (posterior probability >50%).
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a divergent example of S8A subfamily. We identified 13
members of the S8 family, of which two belong to S8A,
four belong to S8B and seven members belong to others
(Additional file 1). In the S8A subfamily, one member is
a SKI-1-like (type I membrane-bound subtilisin-kexin-
isoenzyme) protein, which is a secretory Ca2+-dependent
serine protease that cleaves at nonbasic residues: Thr,
Leu and Lys. SKI-1 plays a critical role in the regulation
of the synthesis and metabolism of cholesterol and fatty
acids [72]. The S8A enzyme tripeptidyl aminopeptidase-
s_II cleaves tripeptides from the free N terminus of oli-
gopeptides; it also exhibits endoproteolytic activity [73].
In the S8B subfamily, all four members are kexin_furin-
like convertases contain an Asp/His/Ser catalytic triad
that is discrete from that of trypsin. Kexins participate
in the activation of peptide hormones, growth factors,
and viral proteins [74]. Furins are involved in the tissue
remodeling of cardiovascular in the trans-Golgi Net-
work (TGN), in endosomes or at cell surface through
cleavage of cell surface vasoactive peptides and proteins.
Furins also play a key role in blood pressure regulation
by the activation of transforming growth factor (TGF)-
beta [75,76]. The functions of kexins and furins of T.
solium remain to be determined.
It is noteworthy that seven members (Scaffold00006.

gene1002 Scaffold00006, Scaffold00007.gene1037 Scaf-
fold00007, Scaffold00007.gene1092 Scaffold00007, Scaf-
fold00008.gene1266 Scaffold00008, Scaffold00009.gene1307
Scaffold00009, Scaffold00038. gene3515 Scaffold00038,
Scaffold00003.gene565 Scaffold00003) of the S8 family con-
tain a large number of (4–26) of cadherin tandem repeat
domains. Cadherins are glycoproteins involved in Ca2+-me-
diated cell-cell adhesion [77]. The cadherin repeat domains
often exist as tandem repeats in the extracellular regions;
they may mediate cell-cell contact when bound to calcium.
They play numerous roles in cell fate, signalling, prolif-
eration, differentiation, and migration. Cadherin-repeat
containing proteins exist as monomers, homodimers, or
heterodimers [55,78,79]. Interestingly, one of these
tapeworm proteases not only contained 26 cadherin_re-
peat domains, but also possessed two calcium-binding
EGF-like domains. EGF_CA domains, present in a large
number of membrane-bound and extracellular proteins,
play a crucial role in numerous protein-protein interactions
[80]. Although exact functions of these cestode enzymes
are not clear, potential roles during the parasite-host inter-
action, such as parasite invasion, adherence, survival and
growth, can be predicted.
Family S54 – the rhomboid proteases – includes

membrane-bound serine endopeptidases. The hydro-
lases separate bioactive signaling peptides from anchor-
ing TM domains. The rhomboid proteases are widely
distributed among bacteria, archaea and eukaryotes [81].
Rhomboid proteases are critical during embryogenesis in

D. melanogaster, and parasite-encoded rhomboid enzymes
play important roles in invasion of host cells by Toxo-
plasma gondii and malaria parasites [82]. In the T. solium
genome, one member belonging to the S54 family
has six TM helices predicted by both TMMOD and
TMHMM showing a likely conserved structure among
taxa (Additional file 1). However, we were not able to
locate the deduced active site of the protease (which
may reflect inaccurate sequencing). It is noteworthy that
this protease contains an EF-hand, calcium-binding
motif with calcium sensors and calcium signal modula-
tors. Ca2+ binding induces a conformational change in
the EF-hand motif, leading to the activation or inactiva-
tion of target proteins [83].
We characterized a single AAA mitochondrial prote-

ase of the S16 family. These kinds of proteases are
known to exhibit numerous regulatory activities, includ-
ing selective degradation of misfolded, unassembled or
oxidatively damaged polypeptides in the mitochondrial
matrix, chaperone functions in the assembly of inner
membrane protein complexes, regulation functions on
mitochondrial gene expression and safeguard functions
for the integrity of the mitochondrial genome, through
binding to mitochondrial promoters and RNA. Down-
regulation of this protease causes a general activation of
caspases and leads to apoptosis [84,85]. T. solium also
has two S26 family members, which may be responsible
for processing precursor proteins to mature forms [86].

Threonine proteases
Threonine proteases are closely associated with the ele-
ments of the 20S proteasome [12]. The proteasome
complex is comprised of four rings of seven subunits,
which form a hollow cylinder, with the active sites lo-
cated on the inner walls of the chamber [87]. Rings one
and four contain alpha-type subunits whereas rings two
and three are composed of beta-type subunits. The N-
terminal threonine residues of some beta subunits are the
nucleophiles in catalysis. In the eukaryotic proteasome,
only the three kinds of beta subunits in ring three possess
catalytic activity [88]. The majority of threonine proteases
identified here in T. solium appear to be subunits of the
proteasome, and seven alpha subunits and seven beta sub-
units of the proteasome were observed. We also identified
a taspase-like protease, an endopeptidase that cleaves spe-
cific substrates following aspartate residues, and a glycosy-
lasparaginase in the T. solium genome. Mature forms of
taspases exhibit endopeptidase activity, and regulate tran-
scription of many genes through hydrolysis of the TFIIA
transcription factor [89].

Conclusions
Bioinformatic techniques were used to explore the puta-
tive proteins encoded by the newly reported genome of T.
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solium for sequences homologous to proteases. Through
comprehensive analysis, 200 predicted proteases were
identified and >98% of them are reported for the first time
from T. solium. Aside from the three proteases described
previously, altogether we determined 197 previously un-
identified proteases, which likely participate in broad
range of biological processes. Here we focused on regu-
latory proteases since they generally possess essential
functions in the virulence - including invasion/entry,
tissue migration and the suppression of host immune
responses - and the developmental progression of the
life cycle of this parasite. Whereas the significance of
protease-mediated regulatory function needs to be estab-
lished through experimentation, the annotation of the
protease-encoding sequences of this tapeworm, particu-
larly regulatory proteases, can be expected to provide leads
and other information on chemotherapeutic targets and
candidates for novel interventions against cysticercosis.

Methods and data
Putative homologues of known proteases in the T.
solium genome were identified using the complete set of
core protease sequences from the MEROPS (release 9.7)
database [55,90]. They consist of a non-redundant library
of the catalytic unit of a protease and exclude all other
functional units, such as domains of Ca2+-binding and
ATP-binding. These core sequences were used to avoid
false positive identification of proteases due to high se-
quence identity in its non-catalytic parts. Core sequences
were compared to predicted proteins from the annotated
T. solium genome sequenced in our laboratories and
in the Beijing Institute of Genomics, Chinese Academy
of Sciences. We downloaded the complete database
of predicted proteins of T. solium genome updated on
November 2, 2012.
The MEROPS batch BLAST [91] comparisons were car-

ried out using the putative proteins as the queries, and the
MEROPS peptidases as the database, where predicted pro-
teins were queried against all members of the protease
database, and sequences with similarity scores (E-value)
greater than 1e-04 were retained as T. solium protease ho-
mologs. For the initial batch BLAST results, query se-
quences, which are analogous to non-protease sequences
(protease-like sequences but without active sites) were
culled. In addition, predicted proteins that were shorter
than 80 residues were removed. Comprehensive analyses
were implemented on the remaining sequences as follows.
In order to characterize the sequences, analyses were

conducted on the results from the MEROPS Batch BLAST
query. Firstly, we examined the predicted function of T.
solium sequences through searching for conserved motif
and domains in the protein sequences independently. This
was done using the Batch Web CD-search tool in the Con-
served Domain Database (CDD) (version 2.25) of NCBI

[92-95]. CDD searches employ a reverse position-specific
BLAST (RPS-BLAST) to align query sequence to protein
domains from SMART v. 7.0 [96], Pfam v. 26.0 [97,98], and
COG [99]. Secondly, pathway-based functional orthology
of the dataset was classified using the KEGG (Kyoto
Encyclopedia of Genes and Genomes) Automated Annota-
tion Server (KAAS) [100]. Thirdly, alpha-helix domains that
likely anchor a cellular membrane were predicted using
two methods TMHMM (http://www.cbs.dtu.dk/services/
TMHMM/) [101] and TMMOD [102]. Fourthly, because
of the expected cellular location and potential to enter the
secretory pathway of a cell are also helpful in classifying
proteins, we identified the signal sequences in the predicted
proteins with signalP 4.1 [103]. The D score is the most re-
liable score to discriminate valid signal sequences in pro-
teins, which is a weighted average of the maximal Y scores
(a combined cleavage site score to determine the most
likely location of the cleavage site of the signal sequence)
and the mean S-score (from position 1 to the position im-
mediately before the maximal Y-score) [104]. In this study,
proteins with D score greater than 0.50 were recognized as
having an N-terminal signal sequence.
Sequence alignments were accomplished using Clustal

X 1.81 [105]. The resulting alignments were subjected to
phylogenetic analysis using MrBayes 3.1.2 under the de-
fault setting [106]. Two simultaneous were carried out,
each being independent runs on each data set. In every
case two runs, each of four chains, including three heated
chains and one cold chain, was specified. MrBayes deter-
mined the most appropriate model (“prset aamodelpr =
mixed”), and at least 10,000,000 generations were run and
trees sampled every 1,000. Runs were continued until the
average standard deviation of the split frequencies be-
tween the two runs was < 0.01. The first 25% of trees
were omitted as burn-in prior to summarizing sampled
trees. Summarizing samples produced a consensus tree
with branch bifurcation support (clade credibility) indi-
cated. Clade credibility was calculated for each bifur-
cation as the proportion of sampled trees with that
bifurcation [106,107].

Availability of supporting data
All phylogenetic data (alignments, phylogenetic trees,
and relevant primary data) have been submitted in Tree-
Base with study ID 15682 (Study Accession URL: http://
purl.org/phylo/treebase/phylows/study/TB2:S15682).

Additional files

Additional file 1: Sequences of Taenia solium proteases sequences
that have significant similarity and active site to known proteases.
The tables list T. solium sequences with share significant similarity to
known proteases, protease family names, conserved domains, active sites,
signal sequences and transmembrane regions.
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Additional file 2: KAAS analysis: KEGG pathway assignment and
KEGG orthology number (KO number) for Taenia solium proteases.
Bioinformatic analysis using the Kyoto Encyclopedia of Genes and Genomes
used to predict probable functions and the cellular processes for the
tapeworm proteases, based on orthologous relationships of proteases for
which functions in other species have been clearly established.

Additional file 3: C1_S1 family catalytic residues - active sites shown
in black of blue. Partial sequence alignment of a family of proteases for
several species; active site residues central to catalysis are highlighted.
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