149 research outputs found

    Lost in Translation? Accountability and Governance of Clinical Stem Cell Research in China

    Get PDF
    Despite China’s regulatory initiatives to promote its research accountability, it still needs to prove itself as a trusted player in life science research. In addition, in contrast to its huge investment, China is losing the race in delivering quality application of stem cells. The trial implementation of the 2015 ministerial regulations seemed to offer hope in ending this dual β€˜lost-in-translation’. Yet skepticism remains. By examining China’s regulatory trajectory in the last 15 years, this paper illustrates that it is a post-hoc pragmatic policy rationale and a soft centralisation regulatory approach that have hampered China’s governance. To improve China’s governance of accountability, policy-makers need to get beyond an β€˜act-in-response’ regulatory ethos and engage with diverse stakeholders

    Analytic philosophy for biomedical research: the imperative of applying yesterday's timeless messages to today's impasses

    Get PDF
    The mantra that "the best way to predict the future is to invent it" (attributed to the computer scientist Alan Kay) exemplifies some of the expectations from the technical and innovative sides of biomedical research at present. However, for technical advancements to make real impacts both on patient health and genuine scientific understanding, quite a number of lingering challenges facing the entire spectrum from protein biology all the way to randomized controlled trials should start to be overcome. The proposal in this chapter is that philosophy is essential in this process. By reviewing select examples from the history of science and philosophy, disciplines which were indistinguishable until the mid-nineteenth century, I argue that progress toward the many impasses in biomedicine can be achieved by emphasizing theoretical work (in the true sense of the word 'theory') as a vital foundation for experimental biology. Furthermore, a philosophical biology program that could provide a framework for theoretical investigations is outlined

    Association between infection early in life and mental disorders among youth in the community: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objective of this study was to examine the association between infection early in life and mental disorders among youth in the community.</p> <p>Methods</p> <p>Data were drawn from the MECA (Methods in Epidemiology of Child and Adolescent psychopathology), a community-based study of 1,285 youth in the United States conducted in 1992. Multiple logistic regression analyses were used to investigate the association between parent/caregiver-reported infection early in life and DSM/DISC diagnoses of mental disorders at ages 9-17.</p> <p>Results</p> <p>Infection early in life was associated with a significantly increased odds of major depression (OR = 3.9), social phobia (OR = 5.8), overanxious disorder (OR = 6.1), panic disorder (OR = 12.1), and oppositional defiant disorder (OR = 3.7).</p> <p>Conclusions</p> <p>These findings are consistent with and extend previous results by providing new evidence suggesting a link between infection early in life and increased risk of depression and anxiety disorders among youth. These results should be considered preliminary. Replication of these findings with longitudinal epidemiologic data is needed. Possible mechanisms are discussed.</p

    Relationship between the Composition of Flavonoids and Flower Colors Variation in Tropical Water Lily (Nymphaea) Cultivars

    Get PDF
    Water lily, the member of the Nymphaeaceae family, is the symbol of Buddhism and Brahmanism in India. Despite its limited researches on flower color variations and formation mechanism, water lily has background of blue flowers and displays an exceptionally wide diversity of flower colors from purple, red, blue to yellow, in nature. In this study, 34 flavonoids were identified among 35 tropical cultivars by high-performance liquid chromatography (HPLC) with photodiode array detection (DAD) and electrospray ionization mass spectrometry (ESI-MS). Among them, four anthocyanins: delphinidin 3-O-rhamnosyl-5-O-galactoside (Dp3Rh5Ga), delphinidin 3-O-(2β€³-O-galloyl-6β€³-O-oxalyl-rhamnoside) (Dp3galloyl-oxalylRh), delphinidin 3-O-(6β€³-O-acetyl-Ξ²-glucopyranoside) (Dp3acetylG) and cyanidin 3- O-(2β€³-O-galloyl-galactopyranoside)-5-O-rhamnoside (Cy3galloylGa5Rh), one chalcone: chalcononaringenin 2β€²-O-galactoside (Chal2β€²Ga) and twelve flavonols: myricetin 7-O-rhamnosyl-(1β†’2)-rhamnoside (My7RhRh), quercetin 7-O-galactosyl-(1β†’2)-rhamnoside (Qu7GaRh), quercetin 7-O-galactoside (Qu7Ga), kaempferol 7-O-galactosyl-(1β†’2)-rhamnoside (Km7GaRh), myricetin 3-O-galactoside (My3Ga), kaempferol 7-O-galloylgalactosyl-(1β†’2)-rhamnoside (Km7galloylGaRh), myricetin 3-O-galloylrhamnoside (My3galloylRh), kaempferol 3-O-galactoside (Km3Ga), isorhamnetin 7-O-galactoside (Is7Ga), isorhamnetin 7-O-xyloside (Is7Xy), kaempferol 3-O-(3β€³-acetylrhamnoside) (Km3-3β€³acetylRh) and quercetin 3-O-acetylgalactoside (Qu3acetylGa) were identified in the petals of tropic water lily for the first time. Meanwhile a multivariate analysis was used to explore the relationship between pigments and flower color. By comparing, the cultivars which were detected delphinidin 3-galactoside (Dp3Ga) presented amaranth, and detected delphinidin 3β€²-galactoside (Dp3β€²Ga) presented blue. However, the derivatives of delphinidin and cyanidin were more complicated in red group. No anthocyanins were detected within white and yellow group. At the same time a possible flavonoid biosynthesis pathway of tropical water lily was presumed putatively. These studies will help to elucidate the evolution mechanism on the formation of flower colors and provide theoretical basis for outcross breeding and developing health care products from this plant

    Small interfering RNA targeting mcl-1 enhances proteasome inhibitor-induced apoptosis in various solid malignant tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Targeting the ubiquitin-proteasome pathway is a promising approach for anticancer strategies. Recently, we found Bik accumulation in cancer cell lines after they were treated with bortezomib. However, recent evidence indicates that proteasome inhibitors may also induce the accumulation of anti-apoptotic Bcl-2 family members. The current study was designed to analyze the levels of several anti-apoptotic members of Bcl-2 family in different human cancer cell lines after they were treated with proteasome inhibitors.</p> <p>Methods</p> <p>Different human cancer cell lines were treated with proteasome inhibitors. Western blot were used to investigate the expression of Mcl-1 and activation of mitochondrial apoptotic signaling. Cell viability was investigated using SRB assay, and induction of apoptosis was measured using flow cytometry.</p> <p>Results</p> <p>We found elevated Mcl-1 level in human colon cancer cell lines DLD1, LOVO, SW620, and HCT116; human ovarian cancer cell line SKOV3; and human lung cancer cell line H1299, but not in human breast cancer cell line MCF7 after they were treated with bortezomib. This dramatic Mcl-1 accumulation was also observed when cells were treated with other two proteasome inhibitors, MG132 and calpain inhibitor I (ALLN). Moreover, our results showed Mcl-1 accumulation was caused by stabilization of the protein against degradation. Reducing Mcl-1 accumulation by Mcl-1 siRNA reduced Mcl-1 accumulation and enhanced proteasome inhibitor-induced cell death and apoptosis, as evidenced by the increased cleavage of caspase-9, caspase-3, and poly (ADP-ribose) polymerase.</p> <p>Conclusions</p> <p>Our results showed that it was not only Bik but also Mcl-1 accumulation during the treatment of proteasome inhibitors, and combining proteasome inhibitors with Mcl-1 siRNA would enhance the ultimate anticancer effect suggesting this combination might be a more effective strategy for cancer therapy.</p

    Large-Scale Fabrication of Boron Nitride Nanotubes via a Facile Chemical Vapor Reaction Route and Their Cathodoluminescence Properties

    Get PDF
    Cylinder- and bamboo-shaped boron nitride nanotubes (BNNTs) have been synthesized in large scale via a facile chemical vapor reaction route using ammonia borane as a precursor. The structure and chemical composition of the as-synthesized BNNTs are extensively characterized by X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, and selected-area electron diffraction. The cylinder-shaped BNNTs have an average diameter of about 100 nm and length of hundreds of microns, while the bamboo-shaped BNNTs are 100–500 nm in diameter with length up to tens of microns. The formation mechanism of the BNNTs has been explored on the basis of our experimental observations and a growth model has been proposed accordingly. Ultraviolet–visible and cathodoluminescence spectroscopic analyses are performed on the BNNTs. Strong ultraviolet emissions are detected on both morphologies of BNNTs. The band gap of the BNNTs are around 5.82 eV and nearly unaffected by tube morphology. There exist two intermediate bands in the band gap of BNNTs, which could be distinguishably assigned to structural defects and chemical impurities

    Nonadhesive Culture System as a Model of Rapid Sphere Formation with Cancer Stem Cell Properties

    Get PDF
    BACKGROUND: Cancer stem cells (CSCs) play an important role in tumor initiation, progression, and metastasis and are responsible for high therapeutic failure rates. Identification and characterization of CSC are crucial for facilitating the monitoring, therapy, or prevention of cancer. Great efforts have been paid to develop a more effective methodology. Nevertheless, the ideal model for CSC research is still evolving. In this study, we created a nonadhesive culture system to enrich CSCs from human oral squamous cell carcinoma cell lines with sphere formation and to characterize their CSC properties further. METHODS: A nonadhesive culture system was designed to generate spheres from the SAS and OECM-1 cell lines. A subsequent investigation of their CSC properties, including stemness, self-renewal, and chemo- and radioresistance in vitro, as well as tumor initiation capacity in vivo, was also performed. RESULTS: Spheres were formed cost-effectively and time-efficiently within 5 to 7 days. Moreover, we proved that these spheres expressed putative stem cell markers and exhibited chemoradiotherapeutic resistance, in addition to tumor-initiating and self-renewal capabilities. CONCLUSIONS: Using this nonadhesive culture system, we successfully established a rapid and cost-effective model that exhibits the characteristics of CSCs and can be used in cancer research

    A Primer on Regression Methods for Decoding cis-Regulatory Logic

    Get PDF
    The rapidly emerging field of systems biology is helping us to understand the molecular determinants of phenotype on a genomic scale [1]. Cis-regulatory elements are major sequence-based determinants of biological processes in cells and tissues [2]. For instance, during transcriptional regulation, transcription factors (TFs) bind to very specific regions on the promoter DNA [2,3] and recruit the basal transcriptional machinery, which ultimately initiates mRNA transcription (Figure 1A). Learning cis-Regulatory Elements from Omics Data A vast amount of work over the past decade has shown that omics data can be used to learn cis-regulatory logic on a genome-wide scale [4-6]--in particular, by integrating sequence data with mRNA expression profiles. The most popular approach has been to identify over-represented motifs in promoters of genes that are coexpressed [4,7,8]. Though widely used, such an approach can be limiting for a variety of reasons. First, the combinatorial nature of gene regulation is difficult to explicitly model in this framework. Moreover, in many applications of this approach, expression data from multiple conditions are necessary to obtain reliable predictions. This can potentially limit the use of this method to only large data sets [9]. Although these methods can be adapted to analyze mRNA expression data from a pair of biological conditions, such comparisons are often confounded by the fact that primary and secondary response genes are clustered together--whereas only the primary response genes are expected to contain the functional motifs [10]. A set of approaches based on regression has been developed to overcome the above limitations [11-32]. These approaches have their foundations in certain biophysical aspects of gene regulation [26,33-35]. That is, the models are motivated by the expected transcriptional response of genes due to the binding of TFs to their promoters. While such methods have gathered popularity in the computational domain, they remain largely obscure to the broader biology community. The purpose of this tutorial is to bridge this gap. We will focus on transcriptional regulation to introduce the concepts. However, these techniques may be applied to other regulatory processes. We will consider only eukaryotes in this tutorial

    FOXM1 Induces a Global Methylation Signature That Mimics the Cancer Epigenome in Head and Neck Squamous Cell Carcinoma

    Get PDF
    The oncogene FOXM1 has been implicated in all major types of human cancer. We recently showed that aberrant FOXM1 expression causes stem cell compartment expansion resulting in the initiation of hyperplasia. We have previously shown that FOXM1 regulates HELLS, a SNF2/helicase involved in DNA methylation, implicating FOXM1 in epigenetic regulation. Here, we have demonstrated using primary normal human oral keratinocytes (NOK) that upregulation of FOXM1 suppressed the tumour suppressor gene p16INK4A (CDKN2A) through promoter hypermethylation. Knockdown of HELLS using siRNA re-activated the mRNA expression of p16INK4A and concomitant downregulation of two DNA methyltransferases DNMT1 and DNMT3B. The dose-dependent upregulation of endogenous FOXM1 (isoform B) expression during tumour progression across a panel of normal primary NOK strains (nβ€Š=β€Š8), dysplasias (nβ€Š=β€Š5) and head and neck squamous cell carcinoma (HNSCC) cell lines (nβ€Š=β€Š11) correlated positively with endogenous expressions of HELLS, BMI1, DNMT1 and DNMT3B and negatively with p16INK4A and involucrin. Bisulfite modification and methylation-specific promoter analysis using absolute quantitative PCR (MS-qPCR) showed that upregulation of FOXM1 significantly induced p16INK4A promoter hypermethylation (10-fold, P<0.05) in primary NOK cells. Using a non-bias genome-wide promoter methylation microarray profiling method, we revealed that aberrant FOXM1 expression in primary NOK induced a global hypomethylation pattern similar to that found in an HNSCC (SCC15) cell line. Following validation experiments using absolute qPCR, we have identified a set of differentially methylated genes, found to be inversely correlated with in vivo mRNA expression levels of clinical HNSCC tumour biopsy samples. This study provided the first evidence, using primary normal human cells and tumour tissues, that aberrant upregulation of FOXM1 orchestrated a DNA methylation signature that mimics the cancer methylome landscape, from which we have identified a unique FOXM1-induced epigenetic signature which may have clinical translational potentials as biomarkers for early cancer screening, diagnostic and/or therapeutic interventions

    Chlamydia trachomatis Co-opts the FGF2 Signaling Pathway to Enhance Infection

    Get PDF
    The molecular details of Chlamydia trachomatis binding, entry, and spread are incompletely understood, but heparan sulfate proteoglycans (HSPGs) play a role in the initial binding steps. As cell surface HSPGs facilitate the interactions of many growth factors with their receptors, we investigated the role of HSPG-dependent growth factors in C. trachomatis infection. Here, we report a novel finding that Fibroblast Growth Factor 2 (FGF2) is necessary and sufficient to enhance C. trachomatis binding to host cells in an HSPG-dependent manner. FGF2 binds directly to elementary bodies (EBs) where it may function as a bridging molecule to facilitate interactions of EBs with the FGF receptor (FGFR) on the cell surface. Upon EB binding, FGFR is activated locally and contributes to bacterial uptake into non-phagocytic cells. We further show that C. trachomatis infection stimulates fgf2 transcription and enhances production and release of FGF2 through a pathway that requires bacterial protein synthesis and activation of the Erk1/2 signaling pathway but that is independent of FGFR activation. Intracellular replication of the bacteria results in host proteosome-mediated degradation of the high molecular weight (HMW) isoforms of FGF2 and increased amounts of the low molecular weight (LMW) isoforms, which are released upon host cell death. Finally, we demonstrate the in vivo relevance of these findings by showing that conditioned medium from C. trachomatis infected cells is enriched for LMW FGF2, accounting for its ability to enhance C. trachomatis infectivity in additional rounds of infection. Together, these results demonstrate that C. trachomatis utilizes multiple mechanisms to co-opt the host cell FGF2 pathway to enhance bacterial infection and spread
    • …
    corecore