12 research outputs found

    Characterization of polyphenols in Australian sweet lupin (Lupinus angustifolius) seed coat by HPLC-DAD-ESI-MS/MS

    Get PDF
    Seeds of the legume lupin (Lupinus spp.) are becoming increasingly important as human food. The seed coat, at ~25% of the whole seed of Lupinus angustifolius (Australian sweet lupin, ASL), is the main by-product of lupin kernel flour production. The primary market for lupin seed coat is low value feed with very limited use in foods. In this study, seed coats of six ASL commercial varieties from two growing sites were sampled for identification and quantification of polyphenols using a high-performance liquid chromatography (HPLC) with diode array detector (DAD) and coupled with a triple quadrupole mass spectrometer which equipped with electrospray ionization source (ESI-MS/MS). Three flavones (apigenin-7-O-β-apiofuranosyl-6,8-di-C-β-glucopyranoside, vicenin 2, and apigenin-7-O-β-glucopyranoside), one isoflavone (genistein) and one dihydroflavonol derivative (aromadendrin-6-C-β-D-glucopyranosyl-7-O-[β-D-apiofuranosyl-(1 → 2)]-O-β-D-glucopyranoside), and several hydroxybenzoic and hydroxycinnamic acid derivatives were identified. Considerable variations in levels of individual polyphenols were found but apigenin-7-O-β-apiofuranosyl-6,8-di-C-β-glucopyranoside was the predominant polyphenol in all samples accounting for 73.08–82.89% of the total free polyphenols. These results suggest that ASL seed coat could be valuable dietary source of polyphenols. © 2018 Elsevier Lt

    S-methyl cysteine sulfoxide and its potential role in human health: A scoping review

    Get PDF
    Higher intakes of cruciferous and allium vegetables are associated with a lower risk of cardiometabolic-related outcomes in observational studies. Whilst acknowledging the many healthy compounds within these vegetables, animal studies indicate that some of these beneficial effects may be partially mediated by S-methyl cysteine sulfoxide (SMCSO), a sulfur-rich, non-protein, amino acid found almost exclusively within cruciferous and alliums. This scoping review explores evidence for SMCSO, its potential roles in human health and possible mechanistic action. After systematically searching several databases (EMBASE, MEDLINE, SCOPUS, CINAHL Plus Full Text, Agricultural Science), we identified 21 original research articles meeting our inclusion criteria. These were limited primarily to animal and in vitro models, with 14/21 (67%) indicating favorable anti-hyperglycemic, anti-hypercholesterolemic, and antioxidant properties. Potential mechanisms included increased bile acid and sterol excretion, altered glucose- and cholesterol-related enzymes, and improved hepatic and pancreatic β-cell function. Raising antioxidant defenses may help mitigate the oxidative damage observed in these pathologies. Anticancer and antibacterial effects were also explored, along with one steroidogenic study. SMCSO is frequently overlooked as a potential mediator to the benefits of sulfur-rich vegetables. More research into the health benefits of SMCSO, especially for cardiometabolic and inflammatory-based pathology, is warranted. Human studies are especially needed

    Nitrate: The Dr. Jekyll and Mr. Hyde of human health?

    Get PDF
    Background: Dietary nitrate has a controversial role in human health. For over half a century, the nitrate content of the three major dietary sources – vegetables, meat, and water – has been legislated, regulated, and monitored due to public health concerns over cancer risk. In contrast, a growing and compelling body of evidence indicates that dietary nitrate, particularly from vegetables, protects against cardiovascular disease and other chronic diseases. This evidence for the protective effect of nitrate is overshadowed by the potential for nitrate to form carcinogenic N-nitrosamines. Scope and approach: The nitrate content, regulations and estimated intake from vegetables, meat and water are described. The evidence that nitrate, through its effects on nitric oxide, improves cardiovascular disease outcomes, cognitive health, musculoskeletal health, and exercise performance as well as the potential to protect against other debilitating health outcomes (nitrate as Dr Jekyll) is discussed. The underlying assumption that all nitrate, irrespective of source, leads to the formation of carcinogenic N-nitrosamines and the evidence of an association between the different sources of nitrate and cancer (nitrate as Mr Hyde) is examined. Key findings and conclusions: The current theory that nitrate, is a carcinogenic contaminant in meat, water, and vegetables is not fully supported by available evidence. Definitive studies examining the beneficial or harmful effects of source-dependent nitrate have yet to be performed. Studies with improved exposure assessment and accurate characterization of factors that affect endogenous nitrosation are also needed to draw conclusions about risk of cancer from dietary nitrate intake

    Development of a food composition database for assessing nitrate and nitrite intake from animal-based foods

    Get PDF
    Scope: Nitrate and nitrite are approved food additives in some animal-based food products. However, nitrate and nitrite in foods are strictly regulated due to health concerns over methaemoglobinaemia and the potential formation of carcinogenic nitrosamines. In contrast, plants (like leafy vegetables) naturally accumulate nitrate ions; a growing body of research reveals beneficial metabolic effects of nitrate via its endogenous conversion to nitric oxide. To refine the association of dietary nitrate and nitrite intake with health outcomes, reliable measures of nitrate and nitrite intake from dietary food records are required. While a vegetable nitrate content database has been developed, there is a need for a comprehensive up-to-date nitrate and nitrite content database of animal-based foods. Methods and Results: A systematic literature search (1980–September 2020) on the nitrate and nitrite content of animal-based foods is carried out. Nitrate and nitrite concentration data and other relevant information are extracted and compiled into a database. The database contains 1921 entries for nitrate and 2077 for nitrite, extracted from 193 publications. The highest median nitrate content is observed in chorizo (median [IQR]; 101.61 [60.05–105.93] mg kg-1). Canned fish products have the highest median nitrite level (median [IQR]; 20.32 [6.16–30.16] mg kg-1). By subgroup, the median nitrate value in industrial processed meat products (e.g., uncured burger, patties and sausages), whole milk powder and in particular red meat are higher than cured meat products. Processed meat products from high-income regions have lower median nitrate and nitrite content than those of middle-income regions. Conclusion: This database can now be used to investigate the associations between nitrate and nitrite dietary intake and health outcomes in clinical trials and observational studies

    Three-dimensional food printing: Its readiness for a food and nutrition insecure world

    Get PDF
    Three-dimensional (3D) food printing is a rapidly emerging technology offering unprecedented potential for customised food design and personalised nutrition. Here, we evaluate the technological advances in extrusion-based 3D food printing and its possibilities to promote healthy and sustainable eating. We consider the challenges in implementing the technology in real-world applications. We propose viable applications for 3D food printing in health care, health promotion and food waste upcycling. Finally, we outline future work on 3D food printing in food safety, acceptability and economics, ethics and regulations. .

    Habitual dietary nitrate intake and cognition in the Australian Imaging, Biomarkers and Lifestyle Study of ageing: A prospective cohort study

    Get PDF
    Background & aims Dietary nitrate improves cardiovascular health via a nitric oxide (NO) pathway. NO is key to both cardiovascular and brain health. There is also a strong association between vascular risk factors and brain health. Dietary nitrate intake could therefore be associated with better cognitive function and reduced risk of cognitive decline. This is yet to be investigated. The aim of this study was to investigate the association between habitual intake of dietary nitrate from sources where nitrate is naturally present, and cognitive function, and cognitive decline, in the presence or absence of the apolipoprotein E (APOE) ε4 allele. Methods The study included 1254 older adult participants of the Australian Imaging, Biomarkers and Lifestyle Study of Ageing who were cognitively normal at baseline. Plant-derived, vegetable-derived, animal derived nitrate (not including meat where nitrate is an allowed additive), and total nitrate intakes were calculated from baseline food frequency questionnaires using comprehensive nitrate databases. Cognition was assessed at baseline and every 18 months over a follow-up period of 126 months using a comprehensive neuropsychological test battery. Multivariable-adjusted linear mixed effect models were used to examine the association between baseline nitrate intake and cognition over the 126 months (median [IQR] follow-up time of 36 [18–72] months), stratified by APOE ε4 carrier status. Results In non APOE ε4 carriers, for every 60 mg/day higher intake of plant-derived nitrate at baseline there was an associated higher language score [β (95% CI): 0.10 (0.01, 0.19)] over 126 months, after multivariable adjustments. In APOE ε4 carriers, there was an associated better episodic recall memory [0.24 (0.08, 0.41)] and recognition memory [0.15 (0.01, 0.30)] scores. Similar associations were seen for the intakes of vegetable-derived and total nitrate. Additionally, in APOE ε4 carriers, for every 6 mg/day higher intake of animal-derived nitrate (excluding meat with nitrate as an allowed additive) at baseline there was an associated higher executive function score [β (95% CI): 1.41 (0.42, 2.39)]. We did not find any evidence of an association between dietary nitrate intake and rate of cognitive decline. Conclusion Our results suggest that habitual intake of dietary nitrate from sources where nitrate is naturally present impacts cognitive performance in an APOE genotype contingent manner. Further work is needed to validate our findings and understand potential mechanisms underlying the observed effects

    Exploring and Improving Functional Properties of Underutilised Lupin Seed Coat

    No full text
    The seed coat of the legume lupin is a by-product of its kernel production. To value-add to this seed coat, its chemical and physiochemical properties were investigated through a genotype × environment study. An extrusion cooking process was then developed and optimised through a two-step response surface design to improve its chemical and physicochemical properties. The results demonstrate that the modified seed coat is a good source of dietary fibre and polyphenols for human food

    Multi-response surface optimisation of extrusion cooking to increase soluble dietary fibre and polyphenols in lupin seed coat

    No full text
    The seed coat of the legume lupin which is rich in insoluble dietary fibre is a major by-product in human food applications. Extrusion cooking has been demonstrated to increase desirable soluble dietary fibre in the Australian sweet lupin seed coat. In this study, processing condition of twin-screw extrusion cooking was optimised using a central composite rotatable design to increase soluble dietary fibre in lupin seed coat from 44.17 g/kg up to 113.69 g/kg dry basis. The high levels of polyphenols in the seed coat were retained. The optimal extrusion conditions which achieved maximum levels of soluble dietary fibre, total free phenolic content and total free individual phenolic content simultaneously were identified and validated. The extrusion cooking largely had no or slight effects on bioaccessibility and bioavailability of the selected minerals and individual polyphenols. The extrusion cooked lupin seed coat could be a natural antioxidant dietary fibre source for human consumption

    S-methyl cysteine sulfoxide and its potential role in human health: a scoping review

    No full text
    Higher intakes of cruciferous and allium vegetables are associated with a lower risk of cardiometabolic-related outcomes in observational studies. Whilst acknowledging the many healthy compounds within these vegetables, animal studies indicate that some of these beneficial effects may be partially mediated by S-methyl cysteine sulfoxide (SMCSO), a sulfur-rich, non-protein, amino acid found almost exclusively within cruciferous and alliums. This scoping review explores evidence for SMCSO, its potential roles in human health and possible mechanistic action. After systematically searching several databases (EMBASE, MEDLINE, SCOPUS, CINAHL Plus Full Text, Agricultural Science), we identified 21 original research articles meeting our inclusion criteria. These were limited primarily to animal and in vitro models, with 14/21 (67%) indicating favorable anti-hyperglycemic, anti-hypercholesterolemic, and antioxidant properties. Potential mechanisms included increased bile acid and sterol excretion, altered glucose- and cholesterol-related enzymes, and improved hepatic and pancreatic β-cell function. Raising antioxidant defenses may help mitigate the oxidative damage observed in these pathologies. Anticancer and antibacterial effects were also explored, along with one steroidogenic study. SMCSO is frequently overlooked as a potential mediator to the benefits of sulfur-rich vegetables. More research into the health benefits of SMCSO, especially for cardiometabolic and inflammatory-based pathology, is warranted. Human studies are especially needed.</p
    corecore