19 research outputs found

    NUMERICAL AND THEORETICAL STUDY ON PARAMETER SELECTION OF ACOUSTIC LOAD TEST OF STEAM DRYER

    No full text
    In recent years some reactors have experienced significant steam dryer cracking. The cause of the dryer's failure was considered as flow-induced acoustic resonance at the stub pipes of the safety relief valves (SRVs) on the main steam lines (MSLs). A research program was started to investigate the acoustic resonance of the steam dryer. Most studies used scaled down method, while our research based on the full scale steam dryer of the prototype CAP1400 but with only one unit of the steam dryer. The purpose of our research program is to study the strength of the steam dryer under flow-induced acoustic resonance. This paper introduces the parameter selection of the main pipe and the stub pipe through numerical method and theoretical method

    Direct synthesis of alpha-hydroxyketone phosphates from terminal alkynes and H-phosphine oxides in the presence of PhI(OAc)(2) and H2O

    No full text
    A simple and highly efficient one-pot method for the construction of alpha-hydroxyketone phosphates from terminal allcynes and H-phosphine oxides has been developed in the presence of PhI(OAc)(2) and H2O. The present protocol provides an attractive approach to a-hydroxyketone phosphates in good to high yields, with the advantages of operation simplicity, the use of commercially available materials, broad substrate scope, high atom efficiency and good tolerance to scale-up synthesis. (C) 2016 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved

    Systematic evaluation of genome-wide methylated DNA enrichment using a CpG island array

    No full text
    Background: Recent progress in high-throughput technologies has greatly contributed to the development of DNA methylation profiling. Although there are several reports that describe methylome detection of whole genome bisulfite sequencing, the high cost and heavy demand on bioinformatics analysis prevents its extensive application. Thus, current strategies for the study of mammalian DNA methylomes is still based primarily on genome-wide methylated DNA enrichment combined with DNA microarray detection or sequencing. Methylated DNA enrichment is a key step in a microarray based genome-wide methylation profiling study, and even for future high-throughput sequencing based methylome analysis

    Comparative transcriptome analysis between an evolved abscisic acid-overproducing mutant Botrytis cinerea TBC-A and its ancestral strain Botrytis cinerea TBC-6

    No full text
    Abscisic acid (ABA) is a classical phytohormone which plays an important role in plant stress resistance. Moreover, ABA is also found to regulate the activation of innate immune cells and glucose homeostasis in mammals. Therefore, this 'stress hormone' is of great importance to theoretical research and agricultural and medical applications. Botrytis cinerea is a well-known phytopathogenic ascomycete that synthesizes ABA via a pathway substantially different from higher plants. Identification of the functional genes involved in ABA biosynthesis in B. cinerea would be of special interest. We developed an ABA-overproducing mutant strain, B. cinerea TBC-A, previously and obtained a 41.5-Mb genome sequence of B. cinerea TBC-A. In this study, the transcriptomes of B. cinerea TBC-A and its ancestral strain TBC-6 were sequenced under identical fermentation conditions. A stringent comparative transcriptome analysis was performed to identify differentially expressed genes participating in the metabolic pathways related to ABA biosynthesis in B. cinerea. This study provides the first global view of the transcriptional changes underlying the very different ABA productivity of the B. cinerea strains and will expand our knowledge of the molecular basis for ABA biosynthesis in B. cinerea

    Polymorph selection in the crystallization of hard-core Yukawa system

    No full text
    Colloid-colloid interactions in charge-stabilized dispersions can to some extent be represented by the hard-core Yukawa model. The crystallization process and polymorph selection of hard-core Yukawa model are studied by means of smart Monte Carlo simulations in the region of face-centered-cubic (fcc) phase. The contact value of hard-core Yukawa potential and the volume fraction of the colloids are fixed, while the Debye screening length can be varied. In the early stage of the crystallization, the precursors with relatively ordered liquid structure have been observed. Although the crystal structure of thermodynamically stable phase is fcc, the system crystallizes into a mixture of fcc and hexagonal close-packed (hcp) structures under small Debye screening length since the colloidal particles act as effective hard spheres. In the intermediate range of Debye screening length, the system crystallizes into a mixture of fcc, hcp, and body-centered-cubic (bcc). The existence of metastable hcp and bcc structures can be interpreted as a manifestation of the Ostwald's step rule. Until the Debye screening length is large enough, the crystal structure obtained is almost a complete fcc suggesting the system eventually reaches to a thermodynamically stable state

    Improvement of iturin A production in Bacillus subtilis ZK0 by overexpression of the comA and sigA genes

    No full text
    Bacillus subtilis ZK0, which was isolated from cotton, produces a type of lipopeptide antibiotic iturin A that inhibits the growth of pathogenic fungi on agricultural crops. However, the low level of iturin A production by B. subtilis ZK0 does not support its large-scale application. In this study, B. subtilis ZK0 was subjected to genetic manipulation to improve iturin A production. By the independent or simultaneous overexpression of two regulatory genes (comA and sigA), iturin A production by B. subtilis ZK0 was significantly increased. When both genes were simultaneously overexpressed under optimal conditions, iturin A production increased up to 215mgl(-1) (an approximate 43-fold increase compared with B. subtilis ZK0). Moreover, overexpression of both genes was unexpectedly found to inhibit biofilm formation by B. subtilis ZK0, indicating that the phenomenon of stuck fermentation' would be avoided during B. subtilis ZK0 fermentation. In conclusion, a genetic manipulation method that improves iturin A production and inhibits biofilm formation in B. subtilis ZK0 is reported for the first time and this method has the potential to be widely applied in B. subtilis ZK0 commercial fermentation. Significance and Impact of the StudyThis study provides new perspectives on improving iturin A production by Bacillus subtilis. Our newly engineered strains could be applied to commercial fermentation by enhancing yields of iturin A and reducing the rate of stuck fermentation'. Increased production would facilitate more widespread application of this powerful antibiotic

    Sodium hydrosulfide modifies the nutrient ratios of soybean (Glycinemax) under iron deficiency

    No full text
    Iron (Fe) deficiency in calcareous soils is a major limiting factor which influences production and yield of field crops. The present study investigated the effect of NaHS, a donor of H2S, which is emerging as a potential signaling molecule, on the nutrient ratios of soybean (Glycine max L.) under Fe deficiency. Soybean seedlings with and without NaHS were subjected to Fe deficiency and Fe sufficiency for 18 d. Subsequently, we determined the biomass of seedlings, chlorophyll concentration, Fe concentration, as well as the ratios of carbon (C), nitrogen (N), phosphorus (P), and potassium (K). The growth of soybean seedlings was inhibited by Fe deficiency. However, under Fe deficiency the application of NaHS increased the biomass as well as the Fe, N, P, and K concentrations compared to the controls. Furthermore, our results also show that the application of NaHS affected the ratios of C : N, C : P, C : K, N : P, N : K, and P : K in soybean seedlings under Fe deficiency and sufficiency. H2S played an important role in promoting the growth of soybean seedlings by enhancing the accumulation of nutrients under Fe deficiency

    Quantum Dot-Based Molecularly Imprinted Polymers on Three-Dimensional Origami Paper Microfluidic Chip for Fluorescence Detection of Phycocyanin

    No full text
    In this work, we developed a novel strategy using fluorescent quantum dots (QDs) combined with molecularly imprinted polymers (MIPs) on three-dimensional (3D) origami paper-based microfluidic devices for specific recognition and sensitive detection of phycocyanin. This method can realize the liquid phase of QDs@MIPs being transferred to the solid-phase paper base and achieve easy portability for the analysis. Under optimal conditions, we successfully demonstrated the proposed paper@QDs@MIP5 3D microfluidic chip for the sensitive and selective detection of phycocyanin protein target in a simple and robust manner. Our results revealed that the method exhibited a dynamic response to phycocyanin in the range of 10-50 mg/L with a limit of detection of 2 mg/L. Importantly, this device could provide quantitative information very conveniently and show great potential to be further extended to the detection of other proteins or biomarkers for environmental and food safety research

    Genome-Wide Identification, Characterization, and Stress-Responsive Expression Profiling of Genes Encoding LEA (Late Embryogenesis Abundant) Proteins in Moso Bamboo (Phyllostachys edulis)

    No full text
    Late embryogenesis abundant (LEA) proteins have been identified in a wide range of organisms and are believed to play a role in the adaptation of plants to stress conditions. In this study, we performed genome-wide identification of LEA proteins and their coding genes in Moso bamboo (Phyllostachys edulis) of Poaceae. A total of 23 genes encoding LEA proteins (PeLEAs) were found in P. edulis that could be classified to six groups based on Pfam protein family and homologous analysis. Further in silico analyses of the structures, gene amount, and biochemical characteristics were conducted and compared with those of O. sativa (OsLEAs), B. distachyon (BdLEAs), Z. mays (ZmLEAs), S. bicolor (SbLEAs), Arabidopsis, and Populus trichocarpa. The less number of PeLEAs was found. Evolutionary analysis revealed orthologous relationship and colinearity between P. edulis, O. sativa, B. distachyon, Z. mays, and S. bicolor. Analyses of the non-synonymous (Ka) and synonymous (Ks) substitution rates and their ratios indicated that the duplication of PeLEAs may have occurred around 18.8 million years ago (MYA), and divergence time of LEA family among the P. edulis-O. sativa and P. edulis-B. distachyon, P. edulis-S. bicolor, and P. edulis-Z. mays was approximately 30 MYA, 36 MYA, 48 MYA, and 53 MYA, respectively. Almost all PeLEAs contain ABA-and (or) stress-responsive regulatory elements. Further RNA-seq analysis revealed approximately 78% of PeLEAs could be up-regulated by dehydration and cold stresses. The present study makes insights into the LEA family in P. edulis and provides inventory of stress-responsive genes for further functional validation and transgenic research aiming to plant genetic improvement of abiotic stress tolerance
    corecore