360 research outputs found

    Generation of Coherent X-Ray Radiation Through Modulation Compression

    Full text link
    In this paper, we propose a scheme to generate tunable coherent X-ray radiation for future light source applications. This scheme uses an energy chirped electron beam, a laser modulator, a laser chirper and two bunch compressors to generate a prebunched kilo-Ampere current electron beam from a few tens Ampere electron beam out of a linac. The initial modulation energy wavelength can be compressed by a factor of 1+hbR56a1+h_b R_{56}^a in phase space, where hbh_b is the energy bunch length chirp introduced by the laser chirper, R56aR_{56}^a is the momentum compaction factor of the first bunch compressor. As an illustration, we present an example to generate more than 400 MW, 170 attoseconds pulse, 1 nm coherent X-ray radiation using a 60 Ampere electron beam out of the linac and 200 nm laser seed. Both the final wavelength and the radiation pulse length in the proposed scheme are tunable by adjusting the compression factor and the laser parameters

    Stability condition for the drive bunch in a collinear wakefield accelerator

    Full text link
    The beam breakup instability of the drive bunch in the structure-based collinear wakefield accel- erator is considered and a stabilizing method is proposed. The method includes using the specially designed beam focusing channel, applying the energy chirp along the electron bunch, and keeping energy chirp constant during the drive bunch deceleration. A stability condition is derived that defines the limit on the accelerating field for the witness bunch.Comment: 10 pages, 6 figure

    A wide bandwidth free-electron laser with mode locking using current modulation

    Get PDF
    A new scheme for mode locking a free-electron laser (FEL) amplifier is proposed based on electron beam current modulation. It is found that certain properties of the original concept (Thompson and McNeil 2008 Phys. Rev. Lett. 100 203901), based on the energy modulation of electrons, are improved, including the spectral brightness of the source and the purity of the series of short pulses. Numerical comparisons are made between the new and old schemes and between a mode-locked FEL and a self-amplified spontaneous emission FEL. Illustrative examples using a hypothetical mode-locked FEL amplifier are provided. The ability to generate intense coherent radiation with a large bandwidth is demonstrated

    A proposal for a generation of two-color ultra-short x-ray pulses

    Get PDF

    Proposal for an Enhanced Self-Amplified Spontaneous Emission X-ray Free Electron Laser

    Get PDF
    We describe a technique by which an energy modulation of electrons via interaction with a laser pulse in a wiggler magnet is used for a significant increase of the electron peak current prior to entering a long SASE FEL undulator. This results in a reduction of the gain length for the SASE process and a modification of the structure of the output x-ray radiation. It also temporally links the output x-ray pulse to the initial laser pulse, thus providing an opportunity for accurate synchronization between the laser pump pulse and x-ray probe pulse for pump-probe experiments
    • …
    corecore