56 research outputs found

    A New Traffic Conflict Measure for Electric Bicycles at Intersections

    Get PDF
    As electric bicycles (e-bikes) are becoming popular in China, concerns have been raised about their safety conditions. A traffic conflict technique is commonly used in traffic safety analysis, and there are many conflict measures designed for cars. However, e-bikes have high flexibility to change speed and trajectories, which is different from cars, so the conflict measures defined for e-bikes need to be independently explored. Based on e-bike driving characteristics, this paper proposes a new measure, the Integrated Conflict Intensity (ICI), for traffic conflicts involving e-bikes at intersections. It measures the degree of dangerousness of a conflict process, with consideration of both conflict risk and conflict severity. Time to collision is used to measure the conflict risk. Relative kinetic energy is used to measure the conflict severity. ICI can be calculated based on video analysis. The method of determining ICI thresholds for three conflict levels (serious, less serious, and slight) and two conflict types (conflicts between two e-bikes, and conflicts between an e-bike and a car) is put forward based on the questionnaires about safety perception of e-bike riders, which is regarded as the criterion of e-bike safety conditions at intersections. The video recording and a questionnaire survey about conflicts involving e-bikes at intersections have been conducted, and the unified thresholds applicable to different intersections have been determined. It is verified that ICI and its thresholds meet the criterion of e-bike safety conditions. This work is expected to be used in the selection of intersections for safety improvement of e-bike traffic.</p

    Open the Black Box – Visualising CNN to Understand Its Decisions on Road Network Performance Level

    Get PDF
    Visualisation helps explain the operating mechanisms of deep learning models, but its applications are rarely seen in traffic analysis. This paper employs a convolu-tional neural network (CNN) to evaluate road network performance level (NPL) and visualises the model to en-lighten how it works. A dataset of an urban road network covering a whole year is used to produce performance maps to train a CNN. In this process, a pretrained network is introduced to overcome the common issue of inadequa-cy of data in transportation research. Gradient weighted class activation mapping (Grad-CAM) is applied to vi-sualise the CNN, and four visualisation experiments are conducted. The results illustrate that the CNN focuses on different areas when it identifies the road network as dif-ferent NPLs, implying which region contributes the most to the deteriorating performance. There are particular visual patterns when the road network transits from one NPL to another, which may help performance prediction. Misclassified samples are analysed to determine how the CNN fails to make the right decisions, exposing the model’s deficiencies. The results indicate visualisation’s potential to contribute to comprehensive management strategies and effective model improvement

    Experimental Study on Stress and Strain Characteristics of Solidified Clay under Seawater Condition

    Get PDF
    This paper presents the results of a laboratory study on the stress-strain relationship of solidified clay formed in seawater corrosion condition. An automatic triaxial apparatus was used and the axial stress and strain was monitored continuously. The dry density was 1.0g/cm3, the cement contents were 4, 6, 8 and 10% by weight of dry soil particles, and the curing time was 28, 60 and 90 days respectively. Test results indicate that the stress strain relationship of cemented clay was affected by soil density, cement content and curing period. A behaviour of strain hardening to strain softening occurred with the increase of cement content. Strong structure will form in cemented clay when the admixture content is 10% or more. The increase in strength of the solidified foundation is resulted from the increase in internal friction angle and cohesive force. The cohesive force increases obviously with the increase of the cement content and the curing age, but the change of internal friction angle is not pronounced after reaching a certain value

    Postpartum depression in mothers and fathers: a structural equation model

    Get PDF
    open access articleBackground Post-partum depression (PPD) is a growing mental health concern worldwide. There is little evidence in the Chinese context of the relationship between paternal PPD and maternal PPD. Given the growing global concerns this relationship requires further exploration. Methods A survey was conducted with 950 total couples from March 2017 to December 2018. The study was conducted using a standardized questionnaire that included basic demographic information, information on the relationship between the mother-in-law and daughter-in-law, marital satisfaction (both maternal and paternal), and PPD symptoms. Structural Equation Modelling (SEM) analysis was used to explore the underlying mechanism for PPD symptoms in mothers and fathers. Results In 4.4% of the couples both the wife and the husband showed depressive symptoms. Maternal marital satisfaction showed a significant mediating effect on paternal PPD (B = -0.114, p < 0.01), and there was a direct effect of maternal PPD on paternal PPD (B = 0.31, p < 0.001). Conclusions This is the first study to investigate the possible correlation between maternal PPD, mother-in-law and daughter-in-law relationship satisfaction, maternal marital satisfaction, paternal marital satisfaction, and paternal PPD. It is important for future PPD interventions to target both maternal and paternal mental health, as well as the mechanisms identified that can lead to PPD

    A STUDY OF DYNAMIC RIGHT-TURN SIGNAL CONTROL STRATEGY AT MIXED TRAFFIC FLOW INTERSECTIONS

    Get PDF
    Traffic conflicts among right-turn vehicles (RTVs), non-motorized vehicles (NMVs) and pedestrians were examined for urban signalized intersections with exclusive right-turn lane. This study proposed an approach to dynamically calculate the duration of the prohibited right-turn for vehicles by using a measure called the Degree of Clustered Conflict (DCC). The process of DCC control includes: 1) quantitative calculation of DCC value in the conflict area; 2) establishing the general cost model that combines the delay and conflict indicators; and 3) applying the DCC-control time model to control RTV in real time. Based on these, the paper presented a general approach of detailed dynamic on-line signal control process of RTV. Finally, the RTV control process was programmed based on VISSIM simulation to evaluate the control effectiveness. The results showed that the general cost (weighted summation of delay and conflict) of the RTV control decreases rapidly compared with non-control, fixed control and full control (drop of 58%, 35% and 42% under small flow conditions and 70%, 59% and 17% in the large flow conditions, respectively). The method not only improved the operation efficiency, but also reduced the potential safety risks among traffic participants when vehicles turn right at intersections

    Joint Modeling Analysis of Trip-Chaining Behavior on Round-Trip Commute in the Context of Xiamen, China

    No full text
    This paper investigates the relationship between commuters’ trip-chaining behaviors on their round-trip commutes: from home to work and from work back home. Two types of joint econometric models—the bivariate ordered probit model and the bivariate Poisson regression model—are developed on the basis of household travel survey data collected from Xiamen, China, in 2003. Nonwork trip frequencies and round-trip commutes are considered as two interrelated dependent variables, whereas independent variables in models include commuters’ age, gender, occupation, and residency status; household composition; commute mode choice; and transit accessibility at the workplace. The error correlations in both types of models are estimated to be positive, which strongly supports the existence of a promotive relationship between trip-chaining behaviors on round-trip commutes. However, the conjecture of a substitutive relationship between round-trip commutes is not supported by the joint models. In addition, it is found that automobile use for commuting plays a highly positive role in commuters’ trip-chaining behaviors for both directions of a round-trip commute

    A Study of Dynamic Right-Turn Signal Control Strategy at Mixed Traffic Flow Intersections

    Get PDF
    Traffic conflicts among right-turn vehicles (RTVs), non-motorized vehicles (NMVs) and pedestrians were examined for urban signalized intersections with exclusive right-turn lane. This study proposed an approach to dynamically calculate the duration of the prohibited right-turn for vehicles by using a measure called the Degree of Clustered Conflict (DCC). The process of DCC control includes: 1) quantitative calculation of DCC value in the conflict area; 2) establishing the general cost model that combines the delay and conflict indicators; and 3) applying the DCC-control time model to control RTV in real time. Based on these, the paper presented a general approach of detailed dynamic on-line signal control process of RTV. Finally, the RTV control process was programmed based on VISSIM simulation to evaluate the control effectiveness. The results showed that the general cost (weighted summation of delay and conflict) of the RTV control decreases rapidly compared with non-control, fixed control and full control (drop of 58%, 35% and 42% under small flow conditions and 70%, 59% and 17% in the large flow conditions, respectively). The method not only improved the operation efficiency, but also reduced the potential safety risks among traffic participants when vehicles turn right at intersections.</p

    A Study of Dynamic Right-Turn Signal Control Strategy at Mixed Traffic Flow Intersections

    No full text
    Traffic conflicts among right-turn vehicles (RTVs), non-motorized vehicles (NMVs) and pedestrians were examined for urban signalized intersections with exclusive right-turn lane. This study proposed an approach to dynamically calculate the duration of the prohibited right-turn for vehicles by using a measure called the Degree of Clustered Conflict (DCC). The process of DCC control includes: 1) quantitative calculation of DCC value in the conflict area; 2) establishing the general cost model that combines the delay and conflict indicators; and 3) applying the DCC-control time model to control RTV in real time. Based on these, the paper presented a general approach of detailed dynamic on-line signal control process of RTV. Finally, the RTV control process was programmed based on VISSIM simulation to evaluate the control effectiveness. The results showed that the general cost (weighted summation of delay and conflict) of the RTV control decreases rapidly compared with non-control, fixed control and full control (drop of 58%, 35% and 42% under small flow conditions and 70%, 59% and 17% in the large flow conditions, respectively). The method not only improved the operation efficiency, but also reduced the potential safety risks among traffic participants when vehicles turn right at intersections.</p
    • …
    corecore