
ABSTRACT
Visualisation helps explain the operating mechanisms 

of deep learning models, but its applications are rarely 
seen in traffic analysis. This paper employs a convolu-
tional neural network (CNN) to evaluate road network 
performance level (NPL) and visualises the model to en-
lighten how it works. A dataset of an urban road network 
covering a whole year is used to produce performance 
maps to train a CNN. In this process, a pretrained network 
is introduced to overcome the common issue of inadequa-
cy of data in transportation research. Gradient weighted 
class activation mapping (Grad-CAM) is applied to vi-
sualise the CNN, and four visualisation experiments are 
conducted. The results illustrate that the CNN focuses on 
different areas when it identifies the road network as dif-
ferent NPLs, implying which region contributes the most 
to the deteriorating performance. There are particular 
visual patterns when the road network transits from one 
NPL to another, which may help performance prediction. 
Misclassified samples are analysed to determine how 
the CNN fails to make the right decisions, exposing the 
model’s deficiencies. The results indicate visualisation’s 
potential to contribute to comprehensive management 
strategies and effective model improvement.
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gradient weighted class activation mapping  
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1. INTRODUCTION
The rapid development of intelligent transpor-

tation systems (ITS) provides favourable condi-
tions for city managers to improve traffic, of which 
the broad deployment of traffic data detectors is 
the most appreciated. Along with significantly en-
hanced data storage and computing capacity, ITS 
affords a large amount of data with broader cov-
erage and higher granularity [1]. Benefiting from 
this, artificial intelligence (AI) that heavily depends 
on data is introduced to traffic analysis. Among AI 
algorithms, deep learning (DL) performs well in 
identifying the underlying non-linear correlations 
of data. Therefore, it is especially suitable for an-
alysing large-scale road networks involving com-
plex spatiotemporal correlations between links 
[2]. Various DL models have been applied in traf-
fic data completion [3], traffic forecast [4], traffic 
performance evaluation [5], and a vast body of re-
sults have been achieved [6]. Despite this, DL is 
constantly criticised for its un-interpretability. The 
end-to-end training and complex structure render 
most DL models ‘black boxes’ [7], making it chal-
lenging to explain how they produce ideal results 
in traffic analysis. This deficiency limits its role 
in providing an in-depth understanding of traffic 
problems. Given that this drawback is pervasive 
for all disciplines using DL models, there has been 
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Localisation approaches are essential to address 
the issue. Among them, class activation mapping 
(CAM) [15] is representative. CAM refers to the 
idea of ‘network in network’ [16] to obtain a sat-
isfying capability to interpret CNN. However, the 
CNN’s original structure is modified when CAM 
is conducted, which means the model needs to be 
retrained overall. This requirement cannot be met 
once the model has been launched or the training 
cost is very high, limiting the application scope of 
CAM. Gradient weighted class activation mapping 
(Grad-CAM) [8] provides a solution. It shares the 
same idea with CAM but puts forward two mea-
sures to improve [15]. As a result, Grad-CAM in-
herits the CAM’s ability to explain classification 
results. Furthermore, it prevents the CNN model 
from being retrained to be visualised, outperform-
ing CAM in operation speed and applicability. 
More details on CAM and Grad-CAM are beyond 
this paper’s scope, and interested readers may re-
fer to [8] and [15] for more information.

Despite the merits of CNN visualisation in traf-
fic analysis and the abundance of methods to fulfil 
the task, there has been little research effort to put 
it into practice to the best of our knowledge. Based 
on the gaps, this paper makes an exploratory at-
tempt to apply visualisation in dealing with traffic 
problems. Firstly, a CNN model is trained to eval-
uate road network performance. In the process, a 
pretrained network is employed to prevent overfit-
ting. Secondly, the model is visualised further by 
Grad-CAM to investigate its internal mechanism 
‘reversely’. Thirdly, four experiments are conduct-
ed to illustrate the knowledge the visualisation 
brings to traffic analysis. The results indicate that 
the visualisation can show the managers the essen-
tial area of the road network for performance de-
terioration and recovery, which may help evaluate 
and predict road network performance. Moreover, 
visualisation allows the managers to understand 
the model’s deficiencies and improve it according-
ly. 

The rest of this paper begins with describing 
techniques to use CNN in evaluating network per-
formance and the method to visualise the model in 
Section 2. Section 3 elaborates on data processing, 
modelling and model visualising. Section 4 de-
scribes the results of the visualisation. The conclu-
sion and future research direction are presented in 
the last section.

a noticeable increase in research on explaining DL 
models’ operating mechanisms, producing a new 
technology called Explainable AI (XAI).

Among XAI methods, visualisation is the most 
celebrated for it presents the abstract operating 
process of DL models as images, which are viv-
id and straightforward even for non-professionals. 
Taking the model for image classification as an ex-
ample, its visualisation usually outputs a thermal 
map with the same size as the original image. On 
the map, the pixels with higher thermal values cor-
respond to the model’s concern when classifying 
the image. In comparison, the pixels with lower 
thermal values are what the model considers not 
significant to explain the image category. Overlay-
ing this thermal map with the original image, one 
can understand which part of the image renders 
the model of the current classification decision. As 
Selvaraju et al. [8] put it, in the fields where AI 
performance is not as good as that of human, vi-
sualisation will help humans to identify the failure 
modes of AI; in the fields where AI performance 
exceeds human, visualisation can, in turn, tell hu-
mans how to make better decisions. In traffic anal-
ysis, visualisation can benefit city managers from 
both aspects. It can expose the drawbacks of DL 
models so that managers can adjust the models to 
better adapt to a particular road network. It can 
also illustrate the trends DL models capture in an 
inefficient road network, containing insights that 
managers have neglected. These uses are of con-
siderable significance in traffic improvement. 

Due to the excellent capability of extracting 
data and image features for convenient displaying, 
the convolutional neural network (CNN) is tak-
en by many traffic studies as the bottom module 
to extract features and compress data in the first 
round [9, 10]. In these studies, CNN determines 
the follow-up analysis reliability as a critical part 
of models. Therefore, it will be significant to visu-
alise CNN to know how it functions and improve 
it accordingly. Fortunately, CNN is especially suit-
able for being visualised because of its nature of 
image processing, and various methods have been 
developed to accomplish this goal. Among these 
methods, the pixel space gradient visualisation 
[11, 12] and feature inversion [13, 14] are typical. 
However, problems have been found with them in 
that neither is suitable for explaining the classifica-
tion results generally. Hence, more practical meth-
ods are needed.
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the GIS map, the location of each grid can be easi-
ly obtained. Denoting the jth (1≤j≤n) grid in row i 
(1≤i≤m) as gij, the pixelized map will be used as the 
PMap template. 

Each link in the road network is broken into mul-
tiple short segments with similar lengths. The short 
lengths make it reasonable to represent each seg-
ment with its midpoint. Collection of Q segments 
whose midpoints are located in gij, PI of gij in in-
terval k, denoted as PIi,j,k, is governed by Equation 1.
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where lq stands for the length of segment q, and 
PIq,k the PI of it in interval k, which is inherited from 
its parent link. 

For interval k, a copy of the pixelized map is 
made and each normalised PIi,j,k is used as the gray 
value to fill gij. In this way, the PMap of each in-
terval can be yielded. With these PMaps as input, a 
CNN was trained to classify them into appropriate 
NPLs automatically.

2.2 Pretrained network of CNN
As an essential DL framework, CNN is expected 

to function well with sufficient training data. How-
ever, typical data sets in traffic analysis are small to 
limit CNN capacity in practice, since the training is 
prone to overfitting. Therefore, besides dropout and 
regularisation to prevent overfitting, other measures 
should be employed to improve the model. Among 
these, a pretrained network is recommended for its 
comprehensibility and low operation cost. Motivat-
ed by these advantages, this paper employed a pre-
trained network to address the insufficient training 
issue. The pretrained network selected was VGG16 
[17], a CNN fully trained on the ImageNet data set. 

2. METHODOLOGY
It is challenging for managers to online evaluate 

road network performance level (NPL) in an inter-
val based on the comprehensive conditions of all 
links, let alone determine which regions contribute 
the most to the inefficiency. By taking each NPL 
as a category, the issue can be transformed into a 
multiclassification task. A CNN will be trained to 
fulfil the task and visualised to present how it makes 
decisions. Figure 1 shows the process schematically.

To realise the process, three essential concerns 
are found in the way: 

 – What to input into the CNN model to present all 
link performances in the road network; 

 – How to train a satisfactory CNN model with lim-
ited data in traffic analysis; 

 – Which CNN visualisation method is ideal for 
balancing explanatory capacity and computa-
tional cost, and which layers of the CNN model 
are the most worth visualising to illustrate the 
model’s focus. 
The answers are the performance map, the pre-

trained network and Grad-CAM to visualise the 
highest layers of the model, respectively.

2.1 Performance map for each interval
Speed, delay and travel time are commonly used 

as the link performance index (PI), whichever is 
straightforward to get online with intelligent connect-
ed vehicles, high-definition network cameras or loop 
detectors. The challenge lies in describing all link PIs 
of some interval in an appropriate format that CNN 
is best at processing, i.e. a 2D image termed as the 
performance map (PMap) in this paper. 

Intuitively, a GIS map is an ideal material to 
create PMaps for its image properties. Dividing the 
GIS map into m×n square grids that share the same 
size, the map with grids can be regarded as an im-
age with m×n pixels. Referring to coordinates of 

Performance map
of each interval

NLP of each
interval

Input info
Optimised CNN Model

Visualise highest levels

Grad-CAM Visualising

Training
 Pretrained network

Feature extraction
& fine-tuning1

2

3

Figure 1 – Process of training and visualising the CNN in this paper
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sidered appropriate for the task at hand. Its operating 
speed can especially meet the requirements of online 
analysis, which is of great significance in traffic man-
agement decision-making. Hence, it is applied as the 
visualisation tool in this paper.

When it comes to the layers to be visualised, the 
information extracted from the full connection and 
softmax layers of CNN is challenging to display; 
however, each convolution layer in the convolution 
base can be visualised by Grad-CAM. Among these 
layers, the convolution layers at the highest level 
contain the most valuable information for illustrating 
which part of the image contributes to the class iden-
tification [20]. Therefore, to better visualise CNN 
with a low computational burden, it is encouraged to 
make full use of these layers and focus on the feature 
map obtained from them to give reasonable explana-
tions of CNN classifications. In this paper, visualisa-
tion is carried out on layers of block5 (see Figure 2).

3. DATA DESCRIPTION 
AND PROCESSING

3.1 Data source and the performance index
The data set used came from GAIA Open Data 

provided by Didi Chuxing. Didi Chuxing collected 
travel trajectories from a floating vehicle with an 
installed Didi app in Shenzhen, China, from 1 Jan-
uary 2018 at 00:00 to 30 December 2018 at 23:50. 
After map matching and data aggregation, the 
data were provided as the travel time index (TTI)  

With the image size 224×224×3 and other parame-
ters unchanged in the original paper, Figure 2 shows 
the structure of VGG16 with each layer name, 
which will be used to refer to the specific layer in 
the rest of the paper.

To reuse VGG16, feature extraction [18] and 
fine-tuning [19], two of the most conventional 
methods of dealing with the pretrained network are 
applied. Feature extraction borrows several gener-
al layers from the pretrained network to reuse their 
structures and weights to extract features and further 
input these features into a new classifier specially 
designed for a new problem. By those means, the 
general layers with a good capacity to extract image 
features are made full use of, and only the new clas-
sifier needs to be trained, which is more effective 
than training the whole model. Fine-tuning keeps 
model structure unchanged but adjusts the weights 
of higher levels to make them more adaptable to the 
new classification problem at hand. 

A CNN model supported by the pretrained net-
work is expected to achieve satisfying performance, 
and it is instructive to visualise its analysis process.

2.3 Grad-CAM visualisation and layers 
to be visualised

Grad-CAM is a breakthrough method for visual-
ising CNN classification principles. Although more 
methods have been derived from it to solve some 
specific problems, the ability of Grad-CAM is con-

Figure 2 – VGG16 structure with original settings
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culate the gray values of the grids to fill the pix-
elized map of each interval (Figure 3c). In this way, 
a total of 52,007 interval PMaps were prepared to 
train a CNN to classify PMaps into five categories, 
e.g. NPL O to IV.

3.3 CNN modelling and optimising
The 52,007 data were numbered from 0 to 

52,006. The NO.0~39,999 samples were selected as 
the training set, and NO.40,000~ 52,006 as the test 
set. Considering that the subsequent analysis con-
cerns temporal correlations of PMaps, it is critical 
to ensure that the time sequence of samples remains 
unchanged, so shuffling was not carried out. Never-
theless, the missing data were noted to protect from 
extracting inconsecutive data as the analysis mate-
rial.

Initially, a basic CNN was built, as shown in 
Figure 4a. There were no measures to prevent over-
fitting, to evaluate the basic model’s ability to clas-
sify. We employed a 3×3 convolution kernel, ReLU 
(Rectified Linear Unit) activation in the convolution 
layers, and a 2×2 max-pooling kernel in the pooling 
layers. Other hyperparameters were set, including 
the epochs=30, batch size=64, learning rate=1e-4 
by previous experimentations. RMSProp (Root 
Mean Square Prop) was used as the optimiser and 
categorical cross-entropy as the loss function. Inter-
ested, readers should refer to [21] for the informa-
tion of the above parameters.

The accuracy of the basic model reached about 
85%. However, there was severe overfitting since 
the accuracy of the training set was constantly in-
creasing, and the accuracy of the test set stopped 
improving since the fifth epoch. Hence, measures 

table with a 10 min interval for all 1,172 links. Be-
cause of the occasional failure to transmit, only the 
data of 52,007 intervals were provided, rather than 
52,416 with no missing data during the collection 
period. These missing data cannot be recovered, 
and the missing intervals were marked to indicate 
that the records before and after them were not 
consecutive in time.

For link p, with up as its free-flow speed and vp,k 
its speed during interval k, its TTI in interval k is 
TTIp,k=up/vp,k,TTI![1,∞). For comparison conve-
nience, all TTIp,k are standardised as

maxTTI TTI
TTI

,
,

,
p k

k

p k=
[^ h  (2)

in which max (TTI*,k) stands for the largest TTIp,k 
in interval k. It maps TTIp,k to (0,1], and a higher 
TTI ,p k  suggests worse link performance. With all 
link TTIs in an interval, the NPL of this interval 
was determined and labelled from O to IV, O for the 
best, and IV for the worst. 

3.2 Image preparation for CNN input
A GIS map of the road network was also provid-

ed (Figure 3a). Its longitude ranges from 113.772855° 
to 114.179985° and latitude from 22.459465° to 
22.856285°, respectively. With 0.005° as the unit 
in both directions, the map was divided into 82×82 
grids, an appreciated resolution for online comput-
ing. In this way, each grid holds an approximate 
side length of 550 m, similar to the average roadway 
length in the urban road network.  

Thus, the pixelized map (Figure 3b) is formed.
1,172 links were further broken into 80,509 seg-

ments with lengths less than 40 m and similar to 
each other. Taking TTI as the PI, with all segment 
TTIs in each interval, Equation 1 was applied to cal-
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model in Figure 5 illustrate that the model signifi-
cantly reduced the index gaps between the training 
set and the test set, which means it succeeded in 
avoiding overfitting.

Given the performance of this model, one will 
be interested in how it can make decisions so effec-
tively. Understanding which regions weigh the most 
when the model decides NPL will be enlightening to 
decide the priority of management strategy. Visual-
isation can help with displaying the model’s focus 
intuitively.

3.4 Visualising the optimised model
To make full use of data, the training set and the 

test set were both input into the optimised model to 
get a predicted class for each sample. Samples were 
divided into two sets according to the result correct-

to prevent overfitting are necessary. After several 
experiments and optimisations, an optimised CNN 
model structured as Figure 4b was constructed. 

In the optimised model: (1) Convolutional base 
of VGG16 worked as a pretrained network. (2) To 
suit the pretrained network, every PMap copied it-
self twice to reconstruct as an 82×82×3 image in 
the input layer. (3) For each PMap, the pretrained 
network extracted its features, and the block5 lay-
ers were particularly fine-tuned to fit the problem 
at hand. These are the crucial steps to use the pre-
trained network, which helped a lot to prevent over-
fitting. (4) The pretrained network was followed by 
a self-defined classifier, in which L2 regularisation 
(λ=0.001) and a dropout layer (dropout rate = 0.5) 
were combined to protect overfitting further. (5) 
Other hyperparameters stated above remained un-
changed. Accuracy and loss curves of the optimised 

b) Optimised CNN model

a) Basic CNN structure

Figure 4 – Structures of two CNNs
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4. RESULTS AND DISCUSSION

4.1 Change of NPLs
For Experiment 1, the NPL changing in chrono-

logical order was analysed. There were no leaping 
changes from one level to the levels with a distance 
of more than 1, consistent with the intuitive knowl-
edge about road network performance change. More-
over, the model seemed prone to confuse NPL II and 
NPL III, NPL III and IV. It was also noticed that the 
errors were particularly likely to occur when NPL 
transitions and during the period when NPL volatiles.

Table 1 is the confusion matrix describing the 
CNN’s wrong decisions. 

With the above result, the interval sequences of 
interest were selected, and their CAMs were anal-
ysed respectively in Experiments 2~4.

Following the conventional practice, heatmaps 
were used to represent CAMs to show the varied ac-
tivation intensity of different regions in PMaps. The 
larger the thermal value of the pixel, the more signif-
icant the role it plays in CNN’s decision-making. In 
this paper, the pixel with a higher thermal value in 
CAMs means the links located in this pixel drive the 
model more strongly to classify the road network in 
the interval to the current NPL. 

In addition, to compare with and distinguish 
from CAM, we also displayed PMaps, represent-
ed initially as a grayscale image (see Figure 3c), as 
a heatmap. Figure 6 presents the colormaps for the 
CAM and PMap heatmaps. 

ness: the correctly classified samples formed a set 
named CS, and the misclassified samples formed a 
set named WS. With them, four visualisation experi-
ments were carried out:
Experiment 1: We studied all NPLs in chronologi-
cal order to find their changing rules. Misclassified 
samples were marked to find when the model failed 
to make the right decisions, and they were studied 
further in Experiment 4.
Experiment 2: For each sample from CS, we calcu-
lated its CAM of the block5_conv3 layer activated 
by its real class, which would help the most to un-
derstand which part of the PMap drove the model to 
make the decision. For the same reason, all CAMs 
in the following experiments were corresponding to 
this layer.
Experiment 3: Considering most samples were con-
secutive in time, it was feasible to obtain sequential 
chronological PMaps in CS. We picked up these 
PMap sequences and their chronological CAMs and 
analysed the changing trend of CAMs.
Experiment 4: For WS, CAMs for the real and mis-
classified classes were calculated, respectively. We 
compared the two CAMs and determined the parts 
the model neglected when making decisions. The 
comparison indicated the drawbacks of the model.

Given that city managers are more concerned 
about poor road network performance, the analysis 
focused on NPL II, III, and IV, which correspond to 
inefficient traffic.
Table 1 – Numbers of misclassified samples according to their real and predicted NPL

Real NSL
Predicted NPL

O I II III IV

O -- 102 0 0 0
I 34 -- 126 0 0
II 0 26 -- 290 0
III 0 0 22 -- 217
IV 0 0 0 33 --

80

60

40

20

0

80

60

40

20

0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.00 50 0 50
a) CAM heatmap b) Pmap heatmap

Figure 6 – Colormaps of CAM and Pmap used in this pape
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work was activated by a particular PMap pattern, 
while only the roads in the northwest were activated 
in others. When it comes to NPL IV, the activated 
areas in CAM were fixed. Besides the CAMs dis-
played in Figure 7c, almost all other CAMs deter-
mined as NPL IV were activated in the southeast 
area, with different activation intensities. 

With the intensively activated areas in CAMs, it 
is easy to determine what patterns the CNN searched 
for in PMaps when it decided each NPL. Therefore, 
CAMs and the corresponding PMaps were paired to 
be observed.  

Figure 8 illustrates that for NPL II, the detector did 
not pay special attention to the isolated grids with 
extremely high TTI, but it was easily attracted by 

4.2 Highly activated areas in CAMs
The Experiment 2 results showed that for dif-

ferent NPLs, the CNN observed different areas in 
PMaps. In other words, some areas were found to be 
worth more reference than others in the CNN clas-
sifying decisions for each NPL. Figure 7 displays the 
sample CAMs for NPL II, III and IV, respectively.

As seen in Figure 7a, the entire road network was 
considered essential in most cases when PMaps 
were classified as NPL II. It means all pixels were 
taken into account, for they shared a similar PMap 
pattern that the CNN determined for NPL II. In con-
trast, the modes became diverse when NPL III was 
determined. In Figure 7b, in some cases, the road net-

a) Several CAMs from NO.33,992~NO.34,006, determined as NPL II.

b) Several CAMs from NO.20,536~NO.20,544, determined as NPL III.

c) Several CAMs from NO.10,024~NO.10,037, determined as NPL IV.

Figure 7 – CAMs for various NPLs, different areas were activated

a) NO.230 b) NO.30,176 c) NO.30,466

d) NO.16,549 e) NO.27,104 f) NO.4,869

Figure 8 – Selected CAMs and corresponding PMaps identified as NPL II
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high-TTI area may become too big to ignore later 
without timely management. Actually, this is the 
critical state between NPL III and NPL IV.

One may notice that PMaps in Figure 8f and 
Figure 9d are similar in that the southeast area is a 
mixture of low and medium-TTI grids. However, 
the CNN determined them as NPL II and NPL III, 
respectively. As stated above, the performance of 
the road network in Figure 8f was approaching NPL 
III, but the medium-TTI grids were not as concen-
trated as in Figure 9d. It seems that the CNN con-
sidered both the number of grids with higher TTI 
and the concentration of these grids when making 
decisions. It is inferred that the CNN had learned a 
principle that isolated higher-TTI grids do not imply 
performance decline of the entire road network. 

With the activations of NPL IV in Figure 10, it 
seems the CNN was sensitive to the densely inter-
weaving grids with different levels of TTIs, espe-
cially when some of these grids held extremely high 
TTIs (Figure 10a and 10b). It suggested that inefficient 
links not far apart were to do significant damage to 
the road network performance. Moreover, the NPL 
IV detector did not seem interested in an isolated 
link with high TTI (Figure 10c-10e). The correspond-
ing pixels in CAM were not highlighted at all. It 
seems that CNN had learned from the data fed to 
it that the overall performance of the road network 
cannot be determined by occasional events, even if 
they may have a destructive impact on a few links. 
Extreme and occasional traffic jams can be evacuat-
ed quickly in a robust regional road network with-
out pushing the CNN to degrade the performance of 
the whole network. This finding suggests that com-
bining CAM and PMap is conducive to comprehen-
sively understanding the road network’s operation. 

clusters of grids with low TTIs, between 0.30 and 
0.45 (Figures 8a-8e). Reviewing the conclusions from 
Figure 7a, one can see that the CNN tended to classi-
fy a road network as NPL II when most links held a 
good service level, which was supposed higher than 
grade C according to a later calculation. It is a rela-
tively harsh requirement.  

Moreover, just like NPL III, the CAM of NPL II 
occasionally presented a distinctive mode (Figure 8f). 
Subsequent investigation in Experiment 3 showed 
that this was due to the upcoming change of NPL. It 
is a noteworthy sign of the impending degradation 
of network performance. Section 4.3 explains more 
about this phenomenon.

For NPL III, although the activated mode of 
CAM diversified, the PMap features that the CNN 
was interested in were pronounced. It ignored 
those links with low TTIs and was not sensitive to 
scattered high-TTI grids but paid particular atten-
tion to the areas composed of pixels with medium 
TTIs. In detail, the activation mode in Figure 9a-9c 
was the most common for NPL III. The TTIs cor-
responding to the activated pixels of NPL III were 
more significant than NPL II, most between 0.41 to 
0.54. This result is acceptable. For the road network 
identified as NPL III, its TTIs are expected higher 
than that of NPL II. However, unlike the paralyzed 
road network, it hardly sees clustered pixels with 
extreme-TTI, which warn of terrible congestion or 
large-scale performance decline. Although in some 
cases, PMaps may possess a lot of high-TTI (0.84 
to 0.94) grids in the southeast area (Figure 9f), the 
counterpart of CAM was dormant, which means 
that the CNN considered the pattern here had little 
significance in the current interval. However, the 

a) NO.1,530 b) NO.4,583 c) NO.32,868

d) NO.5,157 e) NO.13,526 f) NO.24,365

Figure 9 – Selected CAMs and corresponding PMaps identified as NPL III
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low-NPL detector focused on, and then other re-
gions followed up later. However, the early deterio-
ration had not been strong enough to impel the CNN 
to change its rating decisions.  

In comparison, as the road network performance 
recovered (IV to III and III to II), the activated area 
of CAM showed a reversed transferring process 
compared with that when the NPL rose. The south-
east area was still the hot zone. However, the acti-
vation scope shrank gradually, indicating that more 
regions no longer maintained the current NPL’s 
interested mode. Until the activation of the current 
NPL was not intensive enough, the NPL changed. 

From the above results, CAM sequences reveal a 
lot about the change of road network performance. 
It makes it possible to predict NPL and makes it 
easier for managers to find out the reasons for the 
performance deterioration of the road network and 
take measures accordingly.

4.4 The misclassified samples
As Table 1 suggests, the model was inclined to 

misclassify PMaps as higher NPLs. To figure out 
the causes, we selected several misclassified sam-
ples that were wrongly identified as performing 
worse to compare the CAMs activated by real and 
predicted NPL. Figure 12 shows the results. The three 
images grouped in one sub-figure are the CAM of 
the real NPL, the CAM of the predicted NPL, and 
the PMap.

As the figures imply, the real and predicted NPLs 
focused on different areas. They both found ‘their 
pixels’ on the PMaps, thus convincing the CNN that 
the current PMap should be at their respective lev-
els. The CAM of the predicted NPL was activated 
more intensively, so the model failed to allocate 

PMap observes the road network from a micro-level 
and reports the decline of each link, and CAM pro-
vides a better view from a macro respective.

4.3 CAMs for NPL transition
Figures 7–10 illustrate that the activation modes of 

the same NPL were not always consistent. Besides, 
under some circumstances, the road networks with 
similar PMaps were identified as different NPLs. To 
explore these inconsistencies, Experiment 3 tracked 
CAMs of consecutive intervals. It was found that 
the PMaps determined as the same NPL saw grad-
ual changes in CAMs, and there were unique pat-
terns when CAMs transited from one NPL to an-
other. Consecutive CAMs over several periods are 
displayed in Figure 11. During each period, NPL 
remained the same, and at the next interval, NPL 
changed. Given that some consecutive CAMs re-
semble each other, several similar CAMs were 
omitted. See the interval numbers.

As Figure 11 presents, when the activated area of 
NPL II gradually moved from the entire road net-
work to the northwest area, the road network perfor-
mance may be deteriorating. If there was no proper 
management, performance degradation was likely 
to occur (Figure 11a). The same rule worked for the 
transition from NPL III to IV (Figure 11b). In addi-
tion, whether from NPL II to III or III to IV, this 
transformation seemed to start from the southeast 
road network. Keeping in mind the implication of 
CAM, the transfer of the activated area meant that 
the areas no longer activated had lost the modes the 
original NPL detectors were interested in. There-
fore, we can say that the southeast region may have 
been degraded in priority. The corresponding region 
of PMap took the lead in losing the pattern that the 

a) NO.4,701 b) NO.37,274 c) NO.13,605

d) NO.37,284 e) NO.12,725 f) NO.17,474

Figure 10 – Selected CAMs and corresponding PMaps identified as NPL IV
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a) II to III, CAMs NO.20,384 ~ NO.20,390

b) III to IV, CAMs NO.20,820 ~ NO.20,830

c) IV to III, CAMs NO.20,405 ~ NO.20,416

d) III to II, CAMs NO.27,430 ~ NO.27,437

Figure 11 – CAM changes during its transition from an NPL to another.

a) NO.51,809, NPL III as NPL IV b) NO.42,759, NPL III as NPL IV

c) NO.47,190, NPL III as NPL IV d) NO.44,189, NPL II as NPL III

e) NO.47,976, NPL II as NPL III f) NO.40,166, NPL II as NPL III

Figure 12 – CAMs and PMaps of some misclassified samples. 
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which may be caused by insufficient training or data 
skew. Without visualisation, the parameter adjust-
ment task is highly dependent on experience and re-
peated trial and error. Now that these pixels can be 
located by visualisation, one can enhance the model 
accordingly. Visualisation improves the efficiency 
of model improvement, and a better model can be 
obtained with ease to fulfil traffic analysis tasks.

Since managers will be benefited much from 
visualisation, a method with higher resolution is 
encouraged. However, the coarse granularity of 
the visualisation in this paper may be noticed. The 
following three measures can be implemented for 
improvement: firstly, this paper selected 82 × 82 
images as input considering the calculation speed 
and road network scale. This low resolution allows 
computing to be performed online. Actually, the 
GIS map can be segmented into more pixels so that 
each link and even their lanes in different directions 
can be distinguished on the PMaps. Secondly, only 
the highest levels are visualised in this paper; how-
ever, the lower layers can also be visualised with 
adequate computing power, which may bring up 
a heatmap with finer granularity. Lastly, with the 
dramatic development of XAI, many visualisation 
methods are emerging to explain the mechanisms 
of CNN. Many of them achieve higher resolution, 
among which layer-wise relevance propagation 
(LRP) [22], deep learning important features (Deep-
LIFT) [23], and saliency maps [24] are three the au-
thors consider worth exploring. Although they have 
not been introduced into traffic analysis, more satis-
factory performances are expected given their finer 
granularity than Grad-CAM.

5. CONCLUSION
A CNN was trained to evaluate road network per-

formance online based on all links’ PIs. Compared 
with previous studies, this paper introduced the 
emerging CNN visualisation technology to discover 
what the CNN learned from the data set and visually 
present how the CNN made decisions. Four Exper-
iments were conducted to show the insights CNN 
visualisation reveals about the road network and the 
CNN model. Firstly, it helps to understand the NPL 
transition from a macro perspective. It allows man-
agers to see the hidden correlations between road 
network regions, which may have been neglected 
before. Knowing the transfer mode of crucial areas 
in the performance degradation process, one can 
effectively predict each area’s performance to take 

the appropriate attention to the significant area. In 
general, the CNN presented a stationary behaviour 
when making mistakes. Firstly, as discussed in Sec-
tion 4.1, all misclassifications occurred in the NPL 
transition process. Secondly, although the CNN had 
learned unique patterns of NPLs, it seemed to pay 
excessive attention to the southeast area and un-
derestimated the impact of the northwest area. It 
brought up some inspirations to the model improve-
ment, such as weighting the pixels in the northwest 
area when training the CNN. 

4.5 Discussion
From the results, both the single CAM paired 

with PMap and consecutive CAM sequences can 
provide insights into the NPL degradation and re-
covery to help improve the traffic operation. Some 
applications are listed as follows.

Manual NPL grading based on deep road net-
work understanding: given the PMap patterns that 
CNN cares about when making decisions, manag-
ers can grade NPLs based on real-time PMaps with 
significant specific characteristics by themselves. 
Taking Shenzhen’s road network as an example, it 
is easy to determine a PMap as NPL II when most 
pixels are filled with 0.30~0.45 TTI. When high-
TTI and extremely high-TTI grids are mixed in 
the southeast region, the road network is prone to 
perform poorly, no matter the north area’s situation. 
Sporadic high-TTI grids in the road network do 
not mean declining performance, and only regional 
management is required.

Near-future NPL trend forecasting: PI of each 
link is constantly changing. However, NPL may 
maintain the same, improve or deteriorate. The 
trend forecast is of great significance for traffic man-
agement. CNN visualisation can provide valuable 
knowledge and even illustrate the decisive area. Ac-
cording to Experiment 3, for Shenzhen’s road net-
work, the shrinking of the activation area, especially 
from the entire network to the northwest region, by 
the original NPL is a warning signal of approaching 
performance deteriorating. Hence, measures can be 
taken to manage the links and nodes corresponding 
to the high-TTI pixels displayed by PMap to allevi-
ate traffic congestion.

Improving the CNN models that help manage-
ment: the samples misclassified by CNN allow peo-
ple to understand the model’s deficiencies. Gener-
ally speaking, these deficiencies are related to the 
inappropriate weights the model assigned to pixels, 
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表现。分级错误的样本可视化结果则暴露出模型的
缺陷。本文证明了可视化技术在辅助制定交通管理

策略和交通智能模型提升方面的潜力。

关键词

可视化; 卷积神经网络(CNN); 梯度加权分类激

活映射(Grad-CAM); 预训练网络; 路网表现.
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打开黑盒： 以可视化手段理解CNN在路网表现
分级中的决策

摘要

可视化技术可以帮助理解深度学习模型的作用
机理，但少见于交通分析领域。本文搭建了一个卷
积神经网络(CNN)评估路网表现级别(NPL)，然后
将其可视化以理解其决策机制。首先，使用某城市
路网一年的数据生成路网表现地图，用他们去训练
CNN。这一过程借鉴了预训练网络技术，解决交通
研究领域常见的数据不足问题。然后，用梯度加权
分类激活映射(Grad-CAM)将此CNN可视化，开展了
四组实验。结果显示，CNN将路网认定为不同级别
时关注的区域有明显差别，由此可找到在路网表现
降级过程中的关键区域。当路网表现升、降级时，
可视化模式有可循的变化规律，这有利于预测路网
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