214 research outputs found

    Integrating Specialized Classifiers Based on Continuous Time Markov Chain

    Full text link
    Specialized classifiers, namely those dedicated to a subset of classes, are often adopted in real-world recognition systems. However, integrating such classifiers is nontrivial. Existing methods, e.g. weighted average, usually implicitly assume that all constituents of an ensemble cover the same set of classes. Such methods can produce misleading predictions when used to combine specialized classifiers. This work explores a novel approach. Instead of combining predictions from individual classifiers directly, it first decomposes the predictions into sets of pairwise preferences, treating them as transition channels between classes, and thereon constructs a continuous-time Markov chain, and use the equilibrium distribution of this chain as the final prediction. This way allows us to form a coherent picture over all specialized predictions. On large public datasets, the proposed method obtains considerable improvement compared to mainstream ensemble methods, especially when the classifier coverage is highly unbalanced.Comment: Published at IJCAI-17, typo fixe

    Sparse4D v3: Advancing End-to-End 3D Detection and Tracking

    Full text link
    In autonomous driving perception systems, 3D detection and tracking are the two fundamental tasks. This paper delves deeper into this field, building upon the Sparse4D framework. We introduce two auxiliary training tasks (Temporal Instance Denoising and Quality Estimation) and propose decoupled attention to make structural improvements, leading to significant enhancements in detection performance. Additionally, we extend the detector into a tracker using a straightforward approach that assigns instance ID during inference, further highlighting the advantages of query-based algorithms. Extensive experiments conducted on the nuScenes benchmark validate the effectiveness of the proposed improvements. With ResNet50 as the backbone, we witnessed enhancements of 3.0\%, 2.2\%, and 7.6\% in mAP, NDS, and AMOTA, achieving 46.9\%, 56.1\%, and 49.0\%, respectively. Our best model achieved 71.9\% NDS and 67.7\% AMOTA on the nuScenes test set. Code will be released at \url{https://github.com/linxuewu/Sparse4D}

    Sparse4D: Multi-view 3D Object Detection with Sparse Spatial-Temporal Fusion

    Full text link
    Bird-eye-view (BEV) based methods have made great progress recently in multi-view 3D detection task. Comparing with BEV based methods, sparse based methods lag behind in performance, but still have lots of non-negligible merits. To push sparse 3D detection further, in this work, we introduce a novel method, named Sparse4D, which does the iterative refinement of anchor boxes via sparsely sampling and fusing spatial-temporal features. (1) Sparse 4D Sampling: for each 3D anchor, we assign multiple 4D keypoints, which are then projected to multi-view/scale/timestamp image features to sample corresponding features; (2) Hierarchy Feature Fusion: we hierarchically fuse sampled features of different view/scale, different timestamp and different keypoints to generate high-quality instance feature. In this way, Sparse4D can efficiently and effectively achieve 3D detection without relying on dense view transformation nor global attention, and is more friendly to edge devices deployment. Furthermore, we introduce an instance-level depth reweight module to alleviate the ill-posed issue in 3D-to-2D projection. In experiment, our method outperforms all sparse based methods and most BEV based methods on detection task in the nuScenes dataset

    Memory Performance Characterization of SPEC CPU2006 Benchmarks Using TSIM

    Get PDF
    AbstractThis paper uses TSIM, a cycle accurate architecture simulator, to characterize the memory performance of SPEC CPU2006 Benchmarks under CMP platform. The experiment covers 54 workloads with different input sets, and collects statistical information of instruction mixture and cache behaviors. By detecting the cyclical changes of MPKI, this paper clearly shows the memory performance phases of some SPEC CPU2006 programs. These performance data and analysis results can not only help program developers and architects understand the memory performance caused by system architecture better, but also guide them in software and system optimization

    A Study on the Damage and Economic Threshold of the Soybean Aphid at the Seedling Stage

    Get PDF
    Both plot inoculation experiments and field pest scouting at the seedling stage indicated that soybean yield losses were closely related to the number of soybean aphids and the proportion of plants colonized by soybean aphids. The main factors affecting the soybean yield were decrease in plant height and number of pods and seeds, owing to injury by soybean aphids at the seedling stage. Under existing production conditions, the economic injury level was 3.36%. The control threshold was 500 soybean aphids per 100 plants, with 35% of plants colonized by soybean aphids.Originating text in Chinese.Citation: Wang, Xibei, Fang, Yihao, Lin, Zhizhong, Zhang, Lirong, Wang, Huadi. (1994). A Study on the Damage and Economic Threshold of the Soybean Aphid at the Seedling Stage. Plant Protection (Institute of Plant Protection, CAAS, China), 20, 12-13

    Deep Omni-supervised Learning for Rib Fracture Detection from Chest Radiology Images

    Full text link
    Deep learning (DL)-based rib fracture detection has shown promise of playing an important role in preventing mortality and improving patient outcome. Normally, developing DL-based object detection models requires huge amount of bounding box annotation. However, annotating medical data is time-consuming and expertise-demanding, making obtaining a large amount of fine-grained annotations extremely infeasible. This poses pressing need of developing label-efficient detection models to alleviate radiologists' labeling burden. To tackle this challenge, the literature of object detection has witnessed an increase of weakly-supervised and semi-supervised approaches, yet still lacks a unified framework that leverages various forms of fully-labeled, weakly-labeled, and unlabeled data. In this paper, we present a novel omni-supervised object detection network, ORF-Netv2, to leverage as much available supervision as possible. Specifically, a multi-branch omni-supervised detection head is introduced with each branch trained with a specific type of supervision. A co-training-based dynamic label assignment strategy is then proposed to enable flexibly and robustly learning from the weakly-labeled and unlabeled data. Extensively evaluation was conducted for the proposed framework with three rib fracture datasets on both chest CT and X-ray. By leveraging all forms of supervision, ORF-Netv2 achieves mAPs of 34.7, 44.7, and 19.4 on the three datasets, respectively, surpassing the baseline detector which uses only box annotations by mAP gains of 3.8, 4.8, and 5.0, respectively. Furthermore, ORF-Netv2 consistently outperforms other competitive label-efficient methods over various scenarios, showing a promising framework for label-efficient fracture detection.Comment: 11 pages, 4 figures, and 7 table
    • …
    corecore