
 Physics Procedia 33 (2012) 1029 – 1035

1875-3892 © 2012 Published by Elsevier B.V. Selection and/or peer review under responsibility of ICMPBE International Committee.
doi: 10.1016/j.phpro.2012.05.169

2012 International Conference on Medical Physics and Biomedical Engineering

Memory Performance Characterization of SPEC CPU2006
Benchmarks Using TSIM1

Fucen Zeng, Lin Qiao, Mingliang Liu, and Zhizhong Tang
Department of Computer Science and Technology,Tsinghua University,Beijing, China

Email: zengfucen@gmail.com, qiaolin@tsinghua.edu.cn, liuml07@gmail.com, tzz-dcs@tsinghua.edu.cn

Abstract

This paper uses TSIM, a cycle accurate architecture simulator, to characterize the memory performance of SPEC
CPU2006 Benchmarks under CMP platform. The experiment covers 54 workloads with different input sets, and
collects statistical information of instruction mixture and cache behaviors. By detecting the cyclical changes of MPKI,
this paper clearly shows the memory performance phases of some SPEC CPU2006 programs. These performance
data and analysis results can not only help program developers and architects understand the memory performance
caused by system architecture better, but also guide them in software and system optimization.

© 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of [name organizer]

Keywords:chip multi-processor; memory characterization; cache miss; performance; SPEC CPU2006 benchmarks

1.Introduction

There is a common belief that one of the key performance bottlenecks of system architecture is
memory hierarchy. Architects and program developers have a growing need of understanding memory
behaviors of workloads, such as the average miss rate of a specific program, the performance phases, the
number of read/write instructions and the rate of correct prefetches, to optimize architectures or to develop
high performance programs.

As far as architecture design is concerned, an architecture simulator is such an indispensable tool that it
is, in fact, the foundation of quantitative analysis of architecture design, optimization and study. Simulation
gives the architects a quick and accurate performance evaluation of a wide range of architectures, which

1 This work is partially supported by the National High Technology Research and Development Program of China (863 Program)
under Grant No. 2008AA01Z108, and National Science Foundation under Grand No.60773149.

Available online at www.sciencedirect.com

© 2012 Published by Elsevier B.V. Selection and/or peer review under responsibility of ICMPBE International Committee.
Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

1030 Fucen Zeng et al. / Physics Procedia 33 (2012) 1029 – 1035

certainly, reduce the cost and time of a project. For example, both of memory behavior characterization
and exploratory research employ efficient simulation techniques in comparing the performance of one
design policy with that of another.

Many studies on characterizing memory behaviors have been presented in recent years. Some
researchers mainly use architecture simulation methods, while others prefer the performance monitor unit
packaged in the operation system. Jaleel [1] has made a valuable research on memory system optimization
for CMPs and workload characterization of SPEC 2000 CPU and SPEC 2006 CPU suites, using
instrumentation-driven simulation (IDS). Li, et al. [2] have characterized performance of SPEC 2006
benchmarks both on the Intel platform and on the AMD one, using the performance events collected by the
performance monitor unit. They have compared and analyzed performance differences caused by features
of architectures and optimization technologies on the two platforms. Lin, et al. [3] has characterized
memory behavior on emerging RMS (recognition, mining, and synthesis) workloads for future multi-core
processors. They have also explored the LLC design space for multi-threaded RMS workloads by
examining the working set size, data sharing behavior, and spatial data locality. The interested reader will
also enjoy the correlative work in [4].

Recently, Bach, et al. [5] has used software instrumentation technique to efficiently analyze parallel
programs. According to their work, developers can build tools to examine dynamic behaviors including
data races, memory system behavior, and parallelizable loops, using Pin tool. Bienia [6], Bhadauria [7], et
al. characterize the PARSEC benchmarks (Princeton Application Repository for Shared-Memory
Computers). Their characterization shows that the benchmark suite covers a wide spectrum of working sets,
locality, data sharing, synchronization and off-chip traffic.

Most of these studies usually give out many useful performance data, statistical charts of memory
behaviors, and also several design suggestions for kinds of workloads or specific applications. Architects
or software designers may take full use of these analyses. However, few high accurate performance data or
statistical results for CMP platform have been reported.

TSIM (Tsinghua SIMulator) [8], as a trace-driven architecture simulator, uses the binary instrumentation
technique as its front-end. It focuses on CMPs system and provides an extensible framework to explore the
behaviors of on-chip memory subsystem. One of advantages of TSIM is that it is cycle accurate, which as a
result, provides a detailed internal simulation and ensures the accuracy of data. TSIM presents an
extensible approach to exploring behaviors of on-chip subsystems. A TSIM user can configure simulation
parameters freely, such as cache level, cache size, block size, cache associability, cache resources, hit
latency, replacement policy and coherence protocol, etc. Last but not the least, by introducing the concept
of statistical meta metrics, TSIM separates the analysis stage from the simulation process per se, and this
provides a great facilitation for a user to sample the performance metrics for further analysis.

Figure 1. Dynamic Instruction Count of SPEC CPU 2006 Benchmarks

 Fucen Zeng et al. / Physics Procedia 33 (2012) 1029 – 1035 1031

Figure 2. Instruction Mixture of SPEC CPU 2006 Benchmarks

2.Experimental Methodology

SPEC CPU 2006, released by Standard Performance Evaluation Corporation, is designed to provide
performance measurements that can be used to compare compute-intensive workloads on different
computer systems. SPEC CPU2006 contains two benchmark suites: CINT2006 for measuring and
comparing compute-intensive integer performance, and CFP2006 for floating point performance.

This paper uses TSIM to characterize the on-chip memory behaviors under the CMP platform for the
SPEC2006 CPU benchmark suite and the NPB-OMP suite (Nas Parallel Benchmarks, OpenMP version).
In our experiments, more than fifty representative programs of kinds of application areas have been
characterized.

Several important performance measures have been investigated: such as the instruction mixture, MPKI
(Miss Per 1000 Instructions), and rate of correct prefetches of each SPEC CPU 2006 program. After that,
some representative programs are randomly selected to detecting their performance phases. These results
are useful for optimizing architectures and improving the performance of programs.

In order to make the analysis brief, the simulation has been set up to skip the first one billion
instructions and then to run the following one billion ones.

The detailed experimental configuration of TSIM is listed in Table I.

TABLE I. THE EXPERIMENT CONFIGURATION SUMMARY

Configuration Name Value
Cache Size of Simulator 32KB
Cache Block Size 64B
Cache Ports 4 ports for w/r
Number of MSHRs 4
Hit Latency 3 cycles
Load Latency 1 cycle
Way of Associativity 4-way
Replacement Policy LRU

1032 Fucen Zeng et al. / Physics Procedia 33 (2012) 1029 – 1035

3.Memory Performance

The speed gap between processor and memory has become the most important factor influencing
system performance. This section gives the characterization results from several aspects, including
instruction mixture, cache behaviors, performance phases, and cache sharing behaviors.

Figure 3. MPKI of SPEC CPU 2006

Programs

Figure 4. Correct prefetch rate of SPEC CPU 2006 programs using stride prefetch

 Fucen Zeng et al. / Physics Procedia 33 (2012) 1029 – 1035 1033

Figure 5. Detect the MPKI Phases of the selected eight representative SPEC CPU 2006 Benchmarks. The unit of x-axis is

million cycles.

3.1.Instruction Mixture

Figure 1 shows the dynamic instruction count of each program in the SPEC CPU 2006 suite. And
Figure 2 illustrates the instruction mixture of the programs, including branches, loads, stores and other
instructions.

As shown in the figures above, the percentages of loads/stores instructions of all integer programs are
between 41% and 65%, while the floating-point programs are between 40% and 64%. For almost every
SPEC CPU integer program, the percentage of branch instructions is closed to 20%, except 456.hmmer and
464.h264ref. While for most of SPEC CPU floating-point programs, the percentages of their branch
instructions are less than 10%, except 447.dealII, 450.soplex and 453.povray that have nearly 15%. This
implies that higher parallelism of these programs can be exploited, especially for those with large dynamic
basic block sizes.

3.2.Cache Behaviors

 The metric which reflects the cache performance best is misses per 1,000 instructions (MPKI). Miss
rate of a cache represents its utilization, where MPKI statistically denotes the mean one of each 1,000
read/write instruction. Figure 3 shows the MPKI of SPEC CPU 2006 programs; the MPKI metrics of about
ten SPEC CPU 2006 workloads are more than 20%, including astar.rivers, cactusADM, gcc.166, gcc.cp-
decl, gcc.s04,GemsFDT, lbm, leslie3d, mcf.ref, and zeusmp.

1034 Fucen Zeng et al. / Physics Procedia 33 (2012) 1029 – 1035

In literature, cache prefetching technique has been being expected to improve cache performance
greatly. But unfortunately, failed prefetch can also pollute caches, and as a result, cause performance
degradation. Stride prefetch, as a typical prefetch algorithm, is mainly used to eliminate
compulsory/capacity cache miss. Stride prefetch believes that if a memory address is missed, an address
that is offset by a distance from the missed address is likely to be missed in near future. Figure 4 shows the
correct prefetch rate of SPEC CPU 2006 programs when stride prefetch algorithm is used. As we can see,
Stride prefetch mechanism is well performed on gcc.scilab, GemeFDT, hmmer.npb3, hmmer.retro,
omnetpp, soplex.pds-50, and soplex.ref. The correct prefetching rates of all these programs are greater than
10%, which of course, brings a great performance improvement for cache MPKI.

3.3.Performance Phases of SPEC CPU 2006 suite

Figure 5 shows the MPKI changes of eight randomly selected representative benchmarks of SPEC CPU
2006, via the TSIM's sampling tool, where a clear panorama of the workloads' cache behaviors can be
observed. The performance phases of each program have been shown by cyclical changes of MPKIs in
Figure 5.

In the experiment above, the MPKIs of some SPEC CPU 2006 programs change cyclically, while
others remain stable. For program bzip2 with input sets source, text, a MPKI phase periodically appears
nearly every 500 million cycles, and remains alive when other data sets are used. And in similar, program
lbm's performance phase appears every nearly 1,000 million cycles, leslie3d's nearly every 800 million
cycles, and povray.ref's also nearly every 1,000 million cycles. Program gromacs is a interesting case;
whose MPKI remains stable in the first 800 million cycles and periodically appears every 500 million
cycles after that, while hmmer.npb3's MPKI all the same. Contrary to others, program gamess.cytosine has
no any regular changes.

4.Conclusion

This paper presents on-chip memory behavior characterization of SPEC CPU 2006 benchmarks under
CMP platform using a cycle accurate simulator, TSIM. The instruction mixture, MPKI and the correct
stride prefetch rate of SPEC 2006 programs are characterized. After that, cyclical MPKI changes are
detected, which clearly shows the performance phases of the SPEC CPU 2006 programs. Our experimental
results and corresponding analysis are valuable to help programmers understand the performance, caused
by architectures, and optimize programs better. Architects can also benefit from this analysis when making
architecture design.

References

[1] instrumentation-driven simulation - a pin-based memory
characterization of the spec cpu2000 and spec cpu2006 benchmark

[2] characterization of spec cpu2006 benchmarks on intel and
Proceedings of the 2009 First International Workshop on Education Technology and Computer Science, vol. 2,

2009.
[3] the memory behavior of emerging multi-

in Proceedings of Eighth International Symposium on Parallel and Distributed Computing, 2009.
[4] emerging recognition-mining-synthesis workloads for

ommerical Workloads (CAECW), co-located with

[5]

 Fucen Zeng et al. / Physics Procedia 33 (2012) 1029 – 1035 1035

[6] C. Bienia, S. Kumar, J. P. Sing mark suite: Characterization and architectural
 Proceedings of the 17th International Conference on Parallel Architectures and Compilation Techniques, Oct. 2008.

[7]
Computer Systems Laboratory, Cornell University, Ithaca, NY 14853, Tech. Rep., 2008.

[8] extensible memory simulation framework for chip
 Computer Science and Software Engineering (CSSE),

Wuhan, China, Dec. 2009.

