906 research outputs found

    Pore Structure Characterization and Transport Performance Simulation of Cement Hydration Based on Irregular Particles

    Get PDF
    Based on the CEMHYD3D hydration model, the irregular cement particles were introduced into the model, and three 3D micro structures under different water cement ratio (0.23, 0.35, 0.53) were obtained. Numerous physical models for calculating the characteristic parameters of pore structure are established and the characteristic parameters of pore structure obtained from the physical models. The characteristic parameters of pore structure include the total porosity (referred to as porosity), the porosity of continuous pore, isolated pore and dead-end pore, connectivity, pore size distribution and tortuosity. Finally, the transmission coefficient of each micro structure is calculated by the electric simulation method

    Fast amplitude estimation for Low-Voltage Ride-Through Operation of Single-Phase Systems

    Get PDF

    Diverse and Expressive Speech Prosody Prediction with Denoising Diffusion Probabilistic Model

    Full text link
    Expressive human speech generally abounds with rich and flexible speech prosody variations. The speech prosody predictors in existing expressive speech synthesis methods mostly produce deterministic predictions, which are learned by directly minimizing the norm of prosody prediction error. Its unimodal nature leads to a mismatch with ground truth distribution and harms the model's ability in making diverse predictions. Thus, we propose a novel prosody predictor based on the denoising diffusion probabilistic model to take advantage of its high-quality generative modeling and training stability. Experiment results confirm that the proposed prosody predictor outperforms the deterministic baseline on both the expressiveness and diversity of prediction results with even fewer network parameters.Comment: Proceedings of Interspeech 2023 (doi: 10.21437/Interspeech.2023-715), demo site at https://thuhcsi.github.io/interspeech2023-DiffVar

    Phases of Chiral Gauge Theories

    Full text link
    We discuss the behavior of two non-supersymmetric chiral SU(N) gauge theories, involving fermions in the symmetric and antisymmetric two-index tensor representations respectively. In addition to global anomaly matching, we employ a recently proposed inequality constraint on the number of effective low energy (massless) degrees of freedom of a theory, based on the thermodynamic free energy. Several possible zero temperature phases are consistent with the constraints. A simple picture for the phase structure emerges if these theories choose the phase, consistent with global anomaly matching, that minimizes the massless degree of freedom count defined through the free energy. This idea suggests that confinement with the preservation of the global symmetries through the formation of massless composite fermions is in general not preferred. While our discussion is restricted mainly to bilinear condensate formation, higher dimensional condensates are considered for one case. We conclude by commenting briefly on two related supersymmetric chiral theories.Comment: 23 pages, 2 figures, ReVTeX, improved forma

    A fluorescence-switchable luminogen in the solid state: a sensitive and selective sensor for the fast "turn-on" detection of primary amine gas

    Get PDF
    The emission of pyrrole-substituted benzoic acid can be repeatedly switched between the dark and bright states in the solid state by chemical fuming and heating processes, enabling it to work as a rapid sensitive fluorescent sensor for primary amine detection

    Changes in the Expression of miR-381 and miR-495 Are Inversely Associated with the Expression of the MDR1 Gene and Development of Multi-Drug Resistance

    No full text
    Multidrug resistance (MDR) frequently develops in cancer patients exposed to chemotherapeutic agents and is usually brought about by over-expression of P-glycoprotein (P-gp) which acts as a drug efflux pump to reduce the intracellular concentration of the drug(s). Thus, inhibiting P-gp expression might assist in overcoming MDR in cancer chemotherapy. MiRNAome profiling using next-generation sequencing identified differentially expressed microRNAs (miRs) between parental K562 cells and MDR K562 cells (K562/ADM) induced by adriamycin treatment. Two miRs, miR-381 and miR-495, that were strongly down-regulated in K562/ADM cells, are validated to target the 3'-UTR of the MDR1 gene. These miRs are located within a miR cluster located at chromosome region 14q32.31, and all miRs in this cluster appear to be down-regulated in K562/ADM cells. Functional analysis indicated that restoring expression of miR-381 or miR-495 in K562/ADM cells was correlated with reduced expression of the MDR1 gene and its protein product, P-gp, and increased drug uptake by the cells. Thus, we have demonstrated that changing the levels of certain miR species modulates the MDR phenotype in leukemia cells, and propose further exploration of the use of miR-based therapies to overcome MDR.The authors would like to declare that we received funding from a commercial source, i.e. Bioplatforms Australia. This does not alter the authors' adherence to all PLOS ONE policies on sharing data and materials
    corecore