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ABSTRACT Estimating the amplitude of the grid voltage is important for low-voltage ride-through (LVRT)
operation in single-phase systems. It requires fast dynamics and is typically achieved through a phase-locked
loop (PLL). This paper proposes a fast amplitude estimation (FAE) method without a PLL structure. The
grid voltage is formulated as a vector sum of sine and cosine functions, resulting in an algebraic model
with two unknown parameters. The proposed FAE identifies the two parameters, and thus achieving a fast
fault detection (i.e., the amplitude estimation). Experimental results verify the performance of the proposed
method in terms of fast dynamics.

INDEX TERMS Amplitude estimation, voltage sags, low-voltage ride-through (LVRT), parameter identifi-
cation, single-phase systems, grid synchronization.

I. INTRODUCTION
In recent years, renewable energy sources, e.g., wind and
photovoltaic (PV) power, have become essential in the
grid modernization. However, the intermittent and non-
dispatchable nature of the renewable energy challenges the
grid stability [1], [2]. To enhance the resilience and robustness
of power systems, grid codes are released to guide the inte-
gration of renewable energy [3]–[5]. For instance, it is now
mandatory for grid-connected units to ride through temporary
low-voltage grid faults, known as the low-voltage ride-
through (LVRT) operation. In the LVRT operation, the gen-
eration units may provide dynamic grid support by injecting
reactive currents as many grid codes requirements [6]. Taking
the Chinese grid code for PV as an example, the voltage
profile and the corresponding reactive current requirement
are shown in Fig. 1 [6]. It can be observed in Fig. 1(a) that in
certain cases the generation units have to remain connected,
even when the grid voltage drops to zero volts for a period up
to 150 ms. The grid codes also define that the amount of the
reactive current injected into the grids should change with the
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curve in Fig. 1(b) during LVRT. Meanwhile, the injection of
the reactive current should be as fast as possible, since the
required reactive power should be delivered into the grids
through the PV generator within 30 ms. Thus, in order to
ensure the stable operation of the grid-tied system, it is nec-
essary to apply a fast fault detection method to the grid con-
verter system. In details, the grid voltage amplitude should be
estimated quickly so that the grid-tied inverter has sufficient
time to response during fault periods [7].

There are many methods reported in the literature to
estimate the grid voltage amplitude such as the root
mean square (RMS) method [8], the peak voltage detec-
tion method [9] and the discrete Fourier transform (DFT)
method [10]–[12]. However, the dynamics of above methods
are slow. Both the RMS- and the DFT-based methods have
at least one cycle time delay, and the solution based on
the peak voltage detection results in at least one half cycle
time delay. Alternatively, PLL-based methods, e.g., using
the dq-transformation [13], the delayed signal cancellation-
PLL (DSC-PLL) [14], [15] and the active power filter-PLL
(APF-PLL) methods [16] can provide an estimate of the grid
voltage amplitude. However, when the grid voltage suffers
from the harmonic distortion, its detection performance will
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FIGURE 1. Low-voltage ride-through requirements in the Chinese grid code: (a) voltage profiles and (b) reactive current
injection during the operation [4].

FIGURE 2. Control scheme of LVRT operation.

be degraded. To tackle this issue, the second-order gener-
alized integration (SOGI-PLL) method [17]–[20] has been
proposed. It is one of the most popular method among voltage
detection because of its simple structure and good harmonic
immunity. The enhanced PLL (EPLL) is another popular
method in single-phase applications. The standard EPLL can
track phase and frequency jumps without steady-state error.
However, there will be a steady–state error in the presence
of the frequency drifts [21]. In [22], an improved EPLL by
adding multiple delayed signal cancellation filters has been
proposed to tackle this problem. However, this EPLL have
slow dynamics due to the filters. Meanwhile, there are several
methods embed a digital filter into the PLLs to eliminate the
harmonic components [23]–[26], such as the moving aver-
age filter based-PLL (MAF-PLL) method and the cascaded
delayed signal cancellation based-PLL (CDSC-PLL)method.
All the methods mentioned above has a good suppression
effect on harmonics. Nevertheless, slow dynamics are asso-
ciated with the PLLs, the settling time of these PLL-based
methods usually lasts for one grid cycle, and hence, the entire
LVRT performance is degraded.

In addition, in order to get the fast estimation of grid
voltage amplitude during LVRT, there are some amplitude
estimation methods with pre-filtering stage to deal with the
harmonics and independent of PLL. For example, the method

in [3] achieves the accurate detection under harmonic condi-
tions and its response time depends on the voltage variation
point. On the basis of the delay signal cancellation (DSC)
[27], [28] module, the cascaded DSC (CDSC) module [29] is
designed as another non-PLL technique for voltage amplitude
estimation, which benefits from the fast dynamic response
and the strong harmonic suppression ability. Another DSC
operator is used to reduce the response time. In addition, [30]
proposed an adaptive observer to estimate the voltage ampli-
tude with fast dynamics. However, the main shortcoming
of the non-PLL methods is that the performance will be
degraded seriously when the grid voltage suffers from the
frequency variation.

In this paper, a fast amplitude estimation (FAE) method
is proposed for single-phase systems to enhance the LVRT
operation. The proposed FAE takes the grid voltage as a vec-
tor sum of standard sine and cosine functions. Subsequently,
an algebraic model is established based on the measured grid
voltage, the sine and cosine functions, and two unknown
parameters related to the grid voltage amplitude and the
phase angle. Furthermore, a parameter identification method
is introduced to identify the unknown parameters of the
established model, resulting in the estimation of the voltage
amplitude. It is worth to mention that the proposed FAE does
not rely on PLLs and achieves fast dynamics. Experimental

8478 VOLUME 8, 2020



J. Zhang et al.: FAE for LVRT Operation of Single-Phase Systems

results also confirm the fast dynamics of the proposedmethod
in Section IV.

II. THE CONTROL SYSTEM OF LVRT OPERATION
In Fig. 2, it shows the control scheme of LVRT operation to
illustrate the function of the proposed FAE method in LVRT.
The main structure consists of an inverter and its controller.
According to the filtered voltage signal from the AC side of
the inverter, the FAEmethod calculates the voltage amplitude
and provides real-time information to the inverter controller.
Meanwhile, the inverter controller asks the inverter to deliver
the reactive power to the grids according to the amplitude
information given by the FAE.

III. PROPOSED AMPLITUDE ESTIMATION METHOD
In single-phase systems, the grid voltage can be given by

v (t) = Vg sin (ωt + φ) = Vg sinϕ (1)

where v(t) is the grid voltage, Vg, ω, φ and ϕ are the ampli-
tude, frequency, initial phase angle and phase angle of the grid
voltage respectively. Expanding (1) yields

v (t) = Vg cosφ sinωt + Vg sinφ cosωt

= a sinωt + b cosωt (2)

in which a and b are two unknown parameters as

a = Vg cosφ (3)

b = Vg sinφ (4)

Clearly, when a and b are known, the relationship between
a and b indicates that the voltage amplitude can be obtained
as

Vg =
√
a2 + b2 (5)

However, the parameters a and b in (2) are unknown.
In the following, a and b are estimated, and the grid voltage
amplitude is then calculated by (5).

For the grid voltage shown in (1), the estimated voltage can
be expressed as

v̂ (t) = â (t) sinωt + b̂ (t) cosωt (6)

Accordingly, the error between the measured grid voltage
and the estimation can be defined as

ε (t) = â (t) sinωt + b̂ (t) cosωt − v (t) (7)

ε(t) represents the error between the estimation value and
the actual value. â and b̂ being the estimated values of a and
b, respectively. With (7), the parameter estimators of a and b
are proposed as

˙̂a (t) = −γ ε (t) sinωt (8)
˙̂b (t) = −γ ε (t) cosωt (9)

in which γ is the designed parameter of the proposed esti-
mators and γ>0. In the following, a mathematical analysis
is presented to demonstrate that the proposed estimators in

(7)-(9) can achieve zero steady-state error estimation of the
unknown parameters, a and b.

For simplicity, the estimation errors are further defined as

ã (t) = â (t)− a (10)

b̃ (t) = b̂ (t)− b (11)

Substituting (2) into (7) and considering (10) and (11),
we obtain

ε (t) = â (t) sinωt + b̂ (t) cosωt − a sinωt − b cosωt

= ã (t) sinωt + b̃ (t) cosωt (12)

A Lyapunov function is then defined as

V (t) =
ã2 (t)+ b̃2 (t)

2
(13)

Subsequently, taking the derivative of Lyapunov function
(14) yields

V̇ (t) = ã (t) ˙̃a (t)+ b̃ (t) ˙̃b (t) (14)

From (10) and (11), we have

˙̃a(t) = ˙̂a (t) = −γ ε (t) sinωt (15)
˙̃b(t) = ˙̂b (t) = −γ ε (t) cosωt (16)

Then, substituting (15) and (16) into (14) and together with
(12), it results in

V̇ (t) = −ã (t) γ ε (t) sinωt + b̃ (t) γ ε (t) cosωt

= −γ
(
ã (t) sinωt + b̃ (t) cosωt

)
ε (t)

= −γ ε (t)2 (17)

Since γ > 0, the following holds

V̇ (t) ≤ 0 (18)

Considering that sinωt and cosωt are persistently exciting
and also according to the adaptive control theory [31], it can
be concluded that

lim
t→∞

â = a (19)

lim
t→∞

b̂ = b (20)

This means that the proposed method in (7)-(9) can esti-
mate the unknown parameters a and b with zero steady-state
error. In addition, the proposed controller ensures that the
estimated quantities converge to zero exponentially, which
has been proved in [31]. Accordingly, with the obtained a and
b, the amplitude of the grid voltage is estimated as

V̂g =
√
â2 + b̂2 (21)

where V̂g is the estimation of Vg.
In summary, the proposed FAE can estimate the grid volt-

age amplitude, following (7)-(9) and (21). To give a more
clear explanation of the proposed FAE, the control structure
of the FAE method (7)-(9) and (21) is shown in Fig. 3.
Moreover, the selection of the parameter γ is important for
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FIGURE 3. Proposed method for the amplitude estimation of the single-phase grid
voltage.

TABLE 1. Steady-state performance under different values of y.

TABLE 2. Estimation error under different frequency deviation.

the performance of the proposed FAE. To discuss the relation-
ships between the chosen parameter γ and the performance
of the proposed method, FAE is tested with different γ under
a voltage drop from 1 p.u. to 0.4 p.u. and the results are shown
in Fig. 4. It is observed from Fig. 4 that a large γ results in a
small fall time. However, too large γ will cause an overshoot
and its settling time will slow down, as shown in the case of
γ = 0.1. Meanwhile, the proposed method FAE is also tested
with different values of γ under harmonic distortion, which
contains the fifth- and seventh-order harmonic disturbances
of 0.03 p.u. and 0.01 p.u., respectively. The simulation results
are shown in TABLE 1. It can be observed that a large γ
results in large estimation error. Above all, γ = 0.07 is the
best choice for both dynamic and steady-state performance
of FAE.

In addition, it should be pointed out that the proposed FAE
requires the grid frequency information for generating the
functions, sinωkTs and cosωkTs, which can be obtained by a

FIGURE 4. Performance comparison of the proposed fast amplitude
estimation (FAE) under different values of γ .

frequency-locked loop. However, to maintain the dynamics of
the proposed method, the frequency for sinωkTs and cosωkTs
in this paper is set as the grid nominal frequency, while the
robustness against the frequency jump is still high due to
the adaptive scheme in the proposed method, which will be
confirmed by the experimental results in the next section.

IV. EXPERIMENT RESULTS
In this section, experimental tests are performed to verify the
effectiveness of the proposed FAE. The parameters of the
proposed FAE are chosen as γ = 0.07, and the nominal
frequency is 50 Hz. The sampling frequency is 10 kHz. Mean-
while, the estimation achieved by the SOGI-PLL [12] system
is also compared through experimental tests. The parameters
of SOGI-PLL are set as kp = 92 and ki = 4232. Similar
with the setup in [33] and [34], Fig. 5 shows the hardware
implementation of the experimental platform for the proposed
method, which is based on a digital signal processor (DSP)
TMS320F28335. The voltage sag is generated by an ac power
generator, the grid amplitude is calculated by a DSP-based
controller, and the detection results are displayed by an oscil-
loscope.
Case 1: Fig. 6 shows the experimental results under a

voltage drop of 0.6 p.u.. It can be observed in Fig. 6 that
the proposed FAE method can estimate the amplitude of the
grid voltage with zero steady-state error, and its settling time
is less than 5 ms. When compared to the estimations by
the SOGI-PLL, the proposed method has faster dynamics,
as shown in Fig. 6.
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TABLE 3. Comparison with different methods.

FIGURE 5. Experimental setup.

FIGURE 6. Performance comparison of the proposed fast amplitude
estimation (FAE) and the estimation by the SOGI-PLL under a voltage
drop of 0.6 p.u.

Case 2: Fig. 7 compares the performance of the proposed
method and the SOGI-PLL method in the case of a grid
disturbance with a voltage sag of 0.6 p.u. and a frequency
jump of 1 Hz. As shown in Fig. 7, the proposed FAE method
can accurately estimate the amplitude of the grid voltage.
Further observations from Fig. 7 indicate that the proposed
FAE method has fast dynamics and also high robustness

FIGURE 7. Performance comparison of the proposed fast amplitude
estimation (FAE) and the estimation by the SOGI-PLL in the case of a
voltage sag of 0.6 p.u. and a frequency jump of 1 Hz.

against frequency jumps even the nominal frequency was
adopted (as discussed in Section III).

To further verify the robustness against frequency jump,
the proposed method is tested under different frequency
deviations. According to the grid code [32] on frequency
deviation of power systems, the frequency jumps are limited
in ±0.5 Hz. Hence, the proposed method is further tested

VOLUME 8, 2020 8481
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FIGURE 8. Performance comparison of the proposed fast amplitude
estimation (FAE) and the estimation by the SOGI-PLL under a voltage
drop of 0.6 p.u., where the grid voltage also contains 5% 3rd, 6% 5th, 5%
7th, 1.5% 9th and 3.5% 11th-order harmonics respectively.

FIGURE 9. Performance comparison of the proposed fast amplitude
estimation (FAE) and the estimation by the SOGI-PLL in the case of a
voltage sag of 0.6 p.u. where the grid voltage also contains 5% 3rd, 6%
5th, 5% 7th, 1.5% 9th and 3.5% 11th-order harmonics respectively and a
frequency jump of 1 Hz.

under different frequency deviations (≤0.5Hz). The results
are shown in TABLE 2. The maximum estimation error is
±0.7% p.u.. It shows the proposed method has good robust-
ness against frequency jump.
Case 3: In addition, the two estimation methods are tested

under harmonics. Fig. 8 shows the experimental results under
a voltage drop of 0.6 p.u. in the grid voltage, which also
contains the 5% 3rd, 6% 5th, 5% 7th, 1.5% 9th and 3.5%
11th-order harmonics respectively. In this case, the proposed
method again can estimate the amplitude of the distorted
grid voltage with fast dynamics. Moreover, the harmonic
attenuation capability of the proposed method is the same as
that of the SOGI-PLL.
Case 4: In this case, the two methods are conducted under

a voltage drop of 0.6 p.u. in the grid voltage, which also
contains the 5% 3rd, 6% 5th, 5% 7th, 1.5% 9th and 3.5%
11th-order harmonics as well as 1 Hz frequency jump. The
experiment results are shown in Fig. 9. It is obvious that
the FAE and the SOGI-PLL methods both have a slight
fluctuation in the amplitude estimation. However, the settling
time of the SOGI-PLL method is longer than that of the FAE
method.

FIGURE 10. Performance comparison of the proposed fast amplitude
estimation (FAE) and the estimation by the SOGI-PLL under the noise
disturbances and a voltage drop of 0.6 p.u.

Case 5: In order to verify the noise robustness of the
proposed method, the experiment results under noise distur-
bances are shown in Fig. 10. From Fig. 10, it is seen that the
steady-state performance of FAE is as good as SOGI-PLL
under noise disturbances. Moreover, the FAE shows the fast
dynamics again in this case.

In order to further illustrate the performance of the pro-
posed method, a comparison between the proposed FAE and
several other methods including CDSC-PLL, APF-PLL and
the adaptive observer proposed in [30], under ideal grid and
harmonic distortions, respectively. The parameter of CDSC-
PLL is set as: kp = 92 and ki = 4232. The parameters of
APF-PLL is set as: kp = 92 and ki = 4232. The parameters
of the adaptive observer in [30] are set as: kp = 444, ki =
4232, τ = 0.05, L = [−1.2,−1]. From TABLE 3, it is
obvious that the response time of the PLL-based methods
is much longer than the non-PLLs methods because of the
existence of the PLL. Moreover, the APF-PLL is unable to
track the voltage amplitude accurately under the harmonic
variation. Compared to CDSC-PLL, APF-PLL and the adap-
tive observer proposed in [30], the proposed method has fast
detection speed under both ideal and harmonic conditions,
and its response time are 4ms and 3.9ms respectively. In addi-
tion, the proposed FAE has good robustness against harmon-
ics. In summary, the proposed method shows a satisfactory
performance in LVRT operation.

Above all, the experimental results demonstrate the strong
performance of the proposed FAE method in terms of fast
dynamics. Thus, it can be a promising solution for single-
phase systems to enhance the performance under grid faults.

V. CONCLUSION
This paper has proposed a fast amplitude estimation method
for single-phase systems to enhance the LVRT operation
performance. The estimation is achieved by solving an alge-
braic model with two unknown parameters, which reflect
the amplitude of the grid voltage. Based on the obtained
model, a parameter estimator is introduced to identify the
two parameters and then the estimation is realized. Compared
to the SOGI-PLL method, the proposed solution is a
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PLL-independent method, and it has fast dynamics. Exper-
imental tests have verified the performance. The proposed
method can be a promising solution for single-phase systems
operating under grid faults.
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