98 research outputs found

    Benthic Habitat Quality Assessment in Estuarine Intertidal Flats Based on Long-Term Data with Focus on Responses to Eco-Restoration Activity

    Get PDF
    A long-term assessment of the benthic habitat quality of intertidal flats in Liaohe Estuary was conducted by three integrating ecological indices, AZTI’s Marine Biotic Index (AMBI), Multivariate-AMBI (M-AMBI), and Shannon–Wiener diversity index (H′) based on macrobenthos data from 2013 to 2020. The results showed that the macrobenthic communities were characterized by indifferent and sensitive species of AMBI ecological groups. The annual ranges of H′, AMBI, and M-AMBI were 0.77–1.56, 1.44–3.73 and 0.36–0.54, respectively. Noticeable differences were found among assessment obtained by these biotic indices. Approximately 100%, 24%, and 78% sampling sites had “moderate”, “poor”, and “bad” statuses as assessed by H′, AMBI, and M-AMBI, respectively. Compared with H′ and AMBI, M-AMBI may be more applicable to evaluate the benthic habitat quality of intertidal flats in Liaohe Estuary. Results suggest that the benthic habitat quality in the middle parts of intertidal flats still had an unacceptable status and has not improved radically to date after large-scale “mariculture ponds restored to intertidal flats”.publishedVersio

    Identification and validation of a muscle failure index to predict prognosis and immunotherapy in lung adenocarcinoma through integrated analysis of bulk and single-cell RNA sequencing data

    Get PDF
    BackgroundIt was previously reported that the production of exerkines is positively associated with the beneficial effects of exercise in lung adenocarcinoma (LUAD) patients. This study proposes a novel scoring system based on muscle failure-related genes, to assist in clinical decision making.MethodsA comprehensive analysis of bulk and single cell RNA sequencing (scRNA-seq) of early, advanced and brain metastatic LUAD tissues and normal lung tissues was performed to identify muscle failure-related genes in LUAD and to determine the distribution of muscle failure-related genes in different cell populations. A novel scoring system, named MFI (Muscle failure index), was developed and validated. The differences in biological functions, immune infiltration, genomic alterations, and clinical significance of different subtypes were also investigated.ResultsFirst, we conducted single cell analysis on the dataset GSE131907 and identified eight cell subpopulations. We found that four muscle failure-related genes (BDNF, FNDC5, IL15, MSTN) were significantly increased in tumor cells. In addition, IL15 was widely distributed in the immune cell population. And we have validated it in our own clinical cohort. Then we created the MFI model based on 10 muscle failure-related genes using the LASSO algorithm, and MFI remained an independent prognostic factor of OS in both the training and validation cohorts. Moreover, we generated MFI in the single-cell dataset, in which cells with high MFI received and sent more signals compared to those with low MFI. Biological function analysis of both subtypes revealed stronger anti-tumor immune activity in the low MFI group, while tumor cells with high MFI had stronger metabolic and proliferative activity. Finally, we systematically assessed the immune cell activity and immunotherapy responses in LUAD patients, finding that the low MFI group was more sensitive to immunotherapy.ConclusionOverall, our study can improve the understanding of the role of muscle failure-related genes in tumorigenesis and we constructed a reliable MFI model for predicting prognosis and guiding future clinical decision making

    Observation of integer and fractional quantum anomalous Hall states in twisted bilayer MoTe2

    Full text link
    The interplay between strong correlations and topology can lead to the emergence of intriguing quantum states of matter. One well-known example is the fractional quantum Hall effect, where exotic electron fluids with fractionally charged excitations form in partially filled Landau levels. The emergence of topological moir\'e flat bands provides exciting opportunities to realize the lattice analogs of both the integer and fractional quantum Hall states without the need for an external magnetic field. These states are known as the integer and fractional quantum anomalous Hall (IQAH and FQAH) states. Here, we present direct transport evidence of the existence of both IQAH and FQAH states in twisted bilayer MoTe2 (AA stacked). At zero magnetic field, we observe well-quantized Hall resistance of h/e2 around moir\'e filling factor {\nu} = -1 (corresponding to one hole per moir\'e unit cell), and nearly-quantized Hall resistance of 3h/2e2 around {\nu} = -2/3, respectively. Concomitantly, the longitudinal resistance exhibits distinct minima around {\nu} = -1 and -2/3. The application of an electric field induces topological quantum phase transition from the IQAH state to a charge transfer insulator at {\nu} = -1, and from the FQAH state to a generalized Wigner crystal state, further transitioning to a metallic state at {\nu} = -2/3. Our study paves the way for the investigation of fractionally charged excitations and anyonic statistics at zero magnetic field based on semiconductor moir\'e materials

    Construction of recombinant pseudorabies virus expressing PCV2 Cap, PCV3 Cap, and IL-4: investigation of their biological characteristics and immunogenicity

    Get PDF
    BackgroundPorcine circovirus type 2 (PCV2) is a globally prevalent and recurrent pathogen that primarily causes slow growth and immunosuppression in pigs. Porcine circovirus type 3 (PCV3), a recently discovered virus, commonly leads to reproductive disorders in pigs and has been extensively disseminated worldwide. Infection with a single PCV subtype alone does not induce severe porcine circovirus-associated diseases (PCVD), whereas concurrent co-infection with PCV2 and PCV3 exacerbates the clinical manifestations. Pseudorabies (PR), a highly contagious disease in pigs, pose a significant threat to the swine industry in China.MethodsIn this study, recombinant strains named rPRV-2Cap/3Cap and rPRV-2Cap/3Cap/IL4 was constructed by using a variant strain XJ of pseudorabies virus (PRV) as the parental strain, with the TK/gE/gI genes deleted and simultaneous expression of PCV2 Cap, PCV3 Cap, and IL-4. The two recombinant strains obtained by CRISPR/Cas gE gene editing technology and homologous recombination technology has genetic stability in baby hamster Syrian kidney-21 (BHK-21) cells and is safe to mice.ResultsrPRV-2Cap/3Cap and rPRV-2Cap/3Cap/IL4 exhibited good safety and immunogenicity in mice, inducing high levels of antibodies, demonstrated 100% protection against the PRV challenge in mice, reduced viral loads and mitigated pathological changes in the heart, lungs, spleen, and lymph nodes during PCV2 challenge. Moreover, the recombinant viruses with the addition of IL-4 as a molecular adjuvant outperformed the non-addition group in most indicators.ConclusionrPRV-2Cap/3Cap and rPRV-2Cap/3Cap/IL4 hold promise as recombinant vaccines for the simultaneous prevention of PCV2, PCV3, and PRV, while IL-4, as a vaccine molecular adjuvant, effectively enhances the immune response of the vaccine
    • …
    corecore