272 research outputs found

    XY checkerboard antiferromagnet in external field

    Full text link
    Ordering by thermal fluctuations is studied for the classical XY antiferromagnet on a checkerboard lattice in zero and finite magnetic fields by means of analytical and Monte Carlo methods. The model exhibits a variety of novel broken symmetries including states with nematic ordering in zero field and with triatic order parameter at high fields.Comment: 6 page

    Field induced transitions in a kagome antiferromagnet

    Full text link
    The thermal order by disorder effect in magnetic field is studied for a classical Heisenberg antiferromagnet on the kagome lattice. Using analytical arguments we predict a unique H-T phase diagram for this strongly frustrated magnet: states with a coplanar and a uniaxial triatic order parameters respectively at low and high magnetic fields and an incompressible collinear spin-liquid state at a one-third of the saturation field. We also present the Monte Carlo data which confirm existence of these phases.Comment: 4 pages, 2 figures, accepted versio

    Excitonic ferromagnetism in the hexaborides

    Full text link
    A ferromagnet with a small spontaneous moment but with a high Curie temperature can be obtained by doping an excitonic insulator made from a spin triplet exciton condensate. Such a condensate can occur in a semimetal with a small overlap or a semiconductor with a small bandgap. We propose that it is responsible for the unexpected ferromagnetism in the doped hexaboride material Ca_{1-x}La_xB_6.Comment: 4 pages, 3 figure

    Peierls-like transition induced by frustration in a two-dimensional antiferromagnet

    Full text link
    We show that the introduction of frustration into the spin-1/2 two-dimensional (2D) antiferromagnetic Heisenberg model on a square lattice via a next-nearest neighbor exchange interaction can lead to a Peierls-like transition, from a tetragonal to an orthorhombic phase, when the spins are coupled to adiabatic phonons. The two different orthorhombic ground states define an Ising order parameter, which is expected to lead to a finite temperature transition. Implications for Li2VOSiO4{\rm Li_2VOSiO_4}, the first realization of that model, will be discussed.Comment: 4 pages, to be published on Physical Review Letter

    Interlayer Coupling and p-wave Pairing in Strontium Ruthenate

    Full text link
    On the basis of a three orbital model and an effective attractive interaction between electrons we investigate the possible superconducting states, with pp and ff-wave internal symmetry, of Sr2_2RuO4_4. For an orbital dependent interaction which acts between in plane and out of plane nearest neighbour Ruthenium atoms we find a state for which the gap in the quasi-particle spectra has a line node on the α\alpha and β\beta sheets of the Fermi Surface, but it is complex with no nodes on the γ\gamma-sheet. We show that this state is consistent with all the available experimental data. In particular, we present the results of our calculations of the specific heat and penetration depth as functions of the temperature.Comment: 4 pages, 5 figure

    Field induced ordering in highly frustrated antiferromagnets

    Full text link
    We predict that an external field can induce a spin order in highly frustrated classical Heisenberg magnets. We find analytically stabilization of collinear states by thermal fluctuations at a one-third of the saturation field for kagome and garnet lattices and at a half of the saturation field for pyrochlore and frustrated square lattices. This effect is studied numerically for the frustrated square-lattice antiferromagnet by Monte Carlo simulations for classical spins and by exact diagonalization for S=1/2S=1/2. The field induced collinear states have a spin gap and produce magnetization plateaus.Comment: 4 pages, new analytical proof the order by disorder by thermal fluctuations is adde

    CaB_6: a new semiconducting material for spin electronics

    Full text link
    Ferromagnetism was recently observed at unexpectedly high temperatures in La-doped CaB_6. The starting point of all theoretical proposals to explain this observation is a semimetallic electronic structure calculated for CaB_6 within the local density approximation. Here we report the results of parameter-free quasiparticle calculations of the single-particle excitation spectrum which show that CaB_6 is not a semimetal but a semiconductor with a band gap of 0.8 eV. Magnetism in La_xCa_{1-x}B_6 occurs just on the metallic side of a Mott transition in the La-induced impurity band.Comment: 4 pages, 1 postscript figur

    Superconductivity in Sr2_2RuO4_4 Mediated by Coulomb Scattering

    Full text link
    We investigate the superconductivity in Sr2_2RuO4_4 on the basis of the three-dimensional three-band Hubbard model. We propose a model with Coulomb interactions among the electrons on the nearest-neighbor Ru sites. In our model the intersite Coulomb repulsion and exchange coupling can work as the effective interaction for the spin-triplet paring. This effective interaction is enhanced by the band hybridization, which is mediated by the interlayer transfers. We investigate the possibility of this mechanism in the ground state and find that the orbital dependent spin-triplet superconductivity is more stable than the spin-singlet one for realistic parameters. This spin-triplet superconducting state has horizontal line nodes on the Fermi surface.Comment: 13 pages, 4 figure

    Ghost excitonic insulator transition in layered graphite

    Get PDF
    Some unusual properties of layered graphite, including a linear energy dependence of the quasiparticle damping and weak ferromagnetism at low doping, are explained as a result of the proximity of a single graphene sheet to the excitonic insulator phase which can be further stabilized in a doped system of many layers stacked in the staggered (ABAB...ABAB...) configuration

    Weak Ferromagnetism and Excitonic Condensates

    Full text link
    We investigate a model of excitonic ordering (i.e electron-hole pair condensation) appropriate for the divalent hexaborides. We show that the inclusion of imperfectly nested electron hole Fermi surfaces can lead to the formation of an undoped excitonic metal phase. In addition, we find that weak ferromagnetism with compensated moments arises as a result of gapless excitations. We study the effect of the low lying excitations on the density of states, Fermi surface topology and optical conductivity and compare to available experimental data.Comment: 10 Pages, 8 Figures, RevTe
    • …
    corecore