35 research outputs found
Fractional vortex lattice structures in spin triplet superconductors
Motivated by recent interest in spin triplet superconductors, we investigate
the vortex lattice structures for this class of unconventional superconductors.
We discuss how the order parameter symmetry can give rise to U(1)U(1)
symmetry in same sense as in spinor condensates, making half-quantum vortices
(HQV) topologically stable. We then calculate the vortex lattice structure of
HQV's, with particular attention on the roles of the crystalline lattice, the
Zeeman coupling, and Meissner screening, all absent in spinor condensates.
Finally, we consider how spin-orbit coupling leads to a breakdown of the
U(1)U(1) symmetry in free energy and whether the HQV lattice survives
this symmetry breaking. As examples, we examine simpler spin-triplet models
proposed in the context of NaxCoO2yH2O and Bechgaard salts, as well as
the better known and more complex model for Sr2RuO4.Comment: 13 pages, 6 figures. The version published in New Journal of Physics
focus issue on 'Superconductors with Exotic Symmetry' with added reference
Two-phonon scattering of magnetorotons in fractional quantum Hall liquids
We study the phonon-assisted process of dissociation of a magnetoroton, in a
fractional quantum Hall liquid, into an unbound pair of quasiparticles. Whilst
the dissociation is forbidden to first order in the electron-phonon
interaction, it can occur as a two-phonon process. Depending on the value of
final separation between the quasiparticles, the dissociation is either a
single event involving absorption of one phonon and emission of another phonon
of similar energy, or a two-phonon diffusion of a quasiexciton in momentum
space. The dependence of the magnetoroton dissociation time on the filling
factor of the incompressible liquid is found.Comment: 4 pages, no figure
Superconductivity in ferromagnetic metals and in compounds without inversion centre
The symmetry properties and the general overview of the superconductivity
theory in the itinerant ferromagnets and in materials without space parity are
presented. The basic notions of unconventional superconductivity are introduced
in broad context of multiband superconductivity which is inherent property of
ferromagnetic metals or metals without centre of inversion.Comment: 38 pages, no figure
Vortex lattice structures of SrRuO
The vortex lattice structures of SrRuO for the odd parity
representations of the superconducting state are examined for the magnetic
field along the crystallographic directions. Particular emphasis is placed upon
the two dimensional representation which is believed to be relevant to this
material. It is shown that when the zero-field state breaks time reversal
symmetry, there must exist two superconducting transitions when there is a
finite field along a high symmetry direction in the basal plane. Also it is
shown that a square vortex lattice is expected when the field is along the
-axis. The orientation of the square lattice with respect to the underlying
ionic lattice yields information as to which Ru 4d orbitals are relevant to the
superconducting state.Comment: 5 pages, 2 figure
Topological Phase Diagram of a Two-Subband Electron System
We present a phase diagram for a two-dimensional electron system with two
populated subbands. Using a gated GaAs/AlGaAs single quantum well, we have
mapped out the phases of various quantum Hall states in the density-magnetic
filed plane. The experimental phase diagram shows a very different topology
from the conventional Landau fan diagram. We find regions of negative
differential Hall resistance which are interpreted as preliminary evidence of
the long sought reentrant quantum Hall transitions. We discuss the origins of
the anomalous topology and the negative differential Hall resistance in terms
of the Landau level and subband mixing.Comment: 4 pages, 4 figure
Goldstone Mode Relaxation in a Quantum Hall Ferromagnet due to Hyperfine Interaction with Nuclei
Spin relaxation in quantum Hall ferromagnet regimes is studied. As the
initial non-equilibrium state, a coherent deviation of the spin system from the
direction is considered and the breakdown of this Goldstone-mode
state due to hyperfine coupling to nuclei is analyzed. The relaxation occurring
non-exponentially with time is studied in terms of annihilation processes in
the "Goldstone condensate" formed by "zero spin excitons". The relaxation rate
is calculated analytically even if the initial deviation is not small. This
relaxation channel competes with the relaxation mechanisms due to spin-orbit
coupling, and at strong magnetic fields it becomes dominating.Comment: 8 page
Unconventional Pairing in Heavy Fermion Metals
The Fermi-liquid theory of superconductivity is applicable to a broad range
of systems that are candidates for unconventional pairing. Fundamental
differences between unconventional and conventional anisotropic superconductors
are illustrated by the unique effects that impurities have on the
low-temperature transport properties of unconventional superconductors. For
special classes of unconventional superconductors the low-temperature transport
coefficients are {\it universal}, i.e. independent of the impurity
concentration and scattering phase shift. The existence of a universal limit
depends on the symmetry of the order parameter and is achieved at low
temperatures , where is the bandwidth
of the impurity induced Andreev bound states. In the case of UPt thermal
conductivity measurements favor an or ground state.
Measurements at ultra-low temperatures should distinguish different pairing
states.Comment: 8 pages in a LaTex (3.0) file plus 5 Figures in PostScript. To appear
in the Proceedings of the XXI International Conference on Low Temperature
Physics held in Prague, 8-14 August 199
model of superconducting UPt
The phase diagram of superconducting UPt is explained in a
Ginzburg-Landau theory starting from the hypothesis that the order parameter is
a pseudo-spin singlet which transforms according to the representation
of the point group. We show how to compute the positions of the phase
boundaries both when the applied field is in the basal plane and when it is
along the c-axis. The experimental phase diagrams as determined by longitudinal
sound velocity data can be fit using a single set of parameters. In particular
the crossing of the upper critical field curves for the two field directions
and the apparent isotropy of the phase diagram are reproduced. The former is a
result of the magnetic properties of UPt and their contribution to the free
energy in the superconducting state. The latter is a consequence of an
approximate particle-hole symmetry. Finally we extend the theory to finite
pressure and show that, in contrast to other models, the model
explains the observed pressure dependence of the phase boundaries.Comment: RevTex, 29 pages, 18 PostScript figures in a uuencoded, gzipped tar
file. PostScript version of paper, tar file of PostScript figures and
individual PostScript figures are also available via anonymous ftp at
ftp://nym.physics.wisc.edu/anonymou/papers/upt3
Superconductivity in heavy-fermion U(Pt,Pd)3 and its interplay with magnetism
The effect of Pd doping on the superconducting phase diagram of the
unconventional superconductor UPt3 has been measured by (magneto)resistance,
specific heat, thermal expansion and magnetostriction. Experiments on single-
and polycrystalline U(Pt1-xPdx)3 for x<= 0.006 show that the superconducting
transition temperatures of the A phase, Tc+, and of the B phase, Tc-, both
decrease, while the splitting DTc increases at a rate of 0.30(2)K/at.%Pd. We
find that DTc(x) correlates with an increase of the weak magnetic moment m(x)
upon Pd doping. This provides further evidence for Ginzburg-Landau scenarios
with magnetism as the symmetry breaking field, i.e. the 2D E representation and
the 1D odd parity model. Only for small splittings DTc is proportional to
m^2(Tc+) (DTc<= 0.05 K) as predicted. The results at larger splittings call for
Ginzburg-Landau expansions beyond 4th order. The tetracritical point in the B-T
plane persists till at least x= 0.002 for B perpendicular to c, while it is
rapidly suppressed for B||c. Upon alloying the A and B phases gain stability at
the expense of the C phase.Comment: 25 pages text (PS), 8 pages with 14 figures (PS), submitted to
Phys.Rev.
Identification of the Orbital Pairing Symmetry in UPt_3
This paper summarizes the results of a comprehensive analysis of the
thermodynamic and transport data for the superconducting phases of UPt_3.
Calculations of the transverse sound attenuation as a function of temperature,
frequency, polarization, and disorder are presented for the leading models of
the superconducting order parameter. Measurements of the specific heat, thermal
conductivity, and transverse sound attenuation place strong constraints on the
orbital symmetry of the superconducting order parameter. We show that the
superconducting A and B phases are in excellent agreement with pairing states
belonging to the odd-parity E_{2u} orbital representation.Comment: 11 pages with 7 figure