851 research outputs found

    Coherent Compensation based ISAC Signal Processing for Long-range Sensing

    Full text link
    Integrated sensing and communication (ISAC) will greatly enhance the efficiency of physical resource utilization. The design of ISAC signal based on the orthogonal frequency division multiplex (OFDM) signal is the mainstream. However, when detecting the long-range target, the delay of echo signal exceeds CP duration, which will result in inter-symbol interference (ISI) and inter-carrier interference (ICI), limiting the sensing range. Facing the above problem, we propose to increase useful signal power through coherent compensation and improve the signal to interference plus noise power ratio (SINR) of each OFDM block. Compared with the traditional 2D-FFT algorithm, the improvement of SINR of range-doppler map (RDM) is verified by simulation, which will expand the sensing range

    Performance Analyses of the Radio Orbital Angular Momentum Steering Technique Based on Ka-Band Antenna

    Get PDF
    The misalignment in the orbital angular momentum- (OAM-) based system would distort the radiation patterns of twisted beams carrying OAM, consequently making the OAM-based communication infeasible. To tackle the misalignment problem, a radio OAM steering technique based on a uniform circular array (UCA) is illustrated. Subsequently, simulations are conducted to explore the influence of the OAM steering on the OAM mode quality and transmission performance. Furthermore, UCAs working at Ka-band with formulated feeding networks are designed and fabricated to analyze the performance of the OAM steering. The influences of OAM steering on mode quality and orthogonality are then evaluated in the experiment. Overall, the analyses of OAM steering technique are beneficial for the development of radio OAM study

    Combination of TRAIL and actinomycin D liposomes enhances antitumor effect in non-small cell lung cancer

    Get PDF
    The intractability of non-small cell lung cancer (NSCLC) to multimodality treatments plays a large part in its extremely poor prognosis. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising cytokine for selective induction of apoptosis in cancer cells; however, many NSCLC cell lines are resistant to TRAIL-induced apoptosis. The therapeutic effect can be restored by treatments combining TRAIL with chemotherapeutic agents. Actinomycin D (ActD) can sensitize NSCLC cells to TRAIL-induced apoptosis by upregulation of death receptor 4 (DR4) or 5 (DR5). However, the use of ActD has significant drawbacks due to the side effects that result from its nonspecific biodistribution in vivo. In addition, the short half-life of TRAIL in serum also limits the antitumor effect of treatments combining TRAIL and ActD. In this study, we designed a combination treatment of long-circulating TRAIL liposomes and ActD liposomes with the aim of resolving these problems. The combination of TRAIL liposomes and ActD liposomes had a synergistic cytotoxic effect against A-549 cells. The mechanism behind this combination treatment includes both increased expression of DR5 and caspase activation. Moreover, systemic administration of the combination of TRAIL liposomes and ActD liposomes suppressed both tumor formation and growth of established subcutaneous NSCLC xenografts in nude mice, inducing apoptosis without causing significant general toxicity. These results provide preclinical proof-of-principle for a novel therapeutic strategy in which TRAIL liposomes are safely combined with ActD liposomes

    Electroacupuncture Improves Cerebral Vasospasm and Functional Outcome of Patients With Aneurysmal Subarachnoid Hemorrhage

    Get PDF
    Cerebral vasospasm is the major cause of a poor outcome after aneurysmal subarachnoid hemorrhage (aSAH), and effective treatments for vasospasm are limited. The purpose of this study was to research the impact of electroacupuncture (EA) on cerebral vasospasm and the outcomes of patients with aSAH. A total of 60 age- and sex-matched aSAH patients were collected from Ningbo First Hospital between December 2015 and June 2017. All patients were given a basic treatment of nimodipine and randomized into two groups. The study group was treated with EA therapy on the Baihui (GV20) acupoint, and the control group was given mock transcutaneous electrical nerve stimulation. Cerebral vasospasm was measured by computed tomographic perfusion (CTP) and transcranial doppler (TCD). The mean flow velocity (MFV) in the middle cerebral artery (MCA), cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT) of the patients were analyzed. The CBV and MTT exhibited significant differences between the study and control groups on the 1st (p = 0.026 and p = 0.001), 7th (p = 0.020 and p < 0.001), and 14th (p = 0.001 and p < 0.001) day after surgery, whereas CBF exhibited statistical significance only on the 14th day after surgery (p = 0.002). The MFV in MCA were significantly reduced after EA treatment in all patients (all p < 0.001). Additionally, the MFV in the MCA in patients treated with EA were considerably reduced compared with those of the control group (3rd day p = 0.046; 5th day, p = 0.010; 7th day, p < 0.001). Moreover, better outcomes were noted in the EA-treated group for the 1st month (p < 0.001) and 3rd month (p = 0.001) after surgery than in the control group. In conclusion, EA represents a potential method to treat cerebral vasospasm after aSAH and can improve the outcomes of patients with aSAH

    Performance assessment of medical service for organ transplant department based on diagnosis-related groups: A programme incorporating ischemia-free liver transplantation in China

    Get PDF
    BackgroundIn July 2017, the first affiliated hospital of Sun Yat-sen university carried out the world’s first case of ischemia-free liver transplantation (IFLT). This study aimed to evaluate the performance of medical services pre- and post-IFLT implementation in the organ transplant department of this hospital based on diagnosis-related groups, so as to provide a data basis for the clinical practice of the organ transplant specialty.MethodsThe first pages of medical records of inpatients in the organ transplant department from 2016 to 2019 were collected. The China version Diagnosis-related groups (DRGs) were used as a risk adjustment tool to compare the income structure, service availability, service efficiency and service safety of the organ transplant department between the pre- and post-IFLT implementation periods.ResultsIncome structure of the organ transplant department was more optimized in the post-IFLT period compared with that in the pre-IFLT period. Medical service performance parameters of the organ transplant department in the post-IFLT period were better than those in the pre-IFLT period. Specifically, case mix index values were 2.65 and 2.89 in the pre- and post-IFLT periods, respectively (p = 0.173). Proportions of organ transplantation cases were 14.16 and 18.27%, respectively (p < 0.001). Compared with that in the pre-IFLT period, the average postoperative hospital stay of liver transplants decreased by 11.40% (30.17 vs. 26.73 days, p = 0.006), and the average postoperative hospital stay of renal transplants decreased by 7.61% (25.23 vs.23.31 days, p = 0.092). Cost efficiency index decreased significantly compared with that in the pre-IFLT period (p < 0.001), while time efficiency index fluctuated around 0.83 in the pre- and post-IFLT periods (p = 0.725). Moreover, the average postoperative hospital stay of IFLT cases was significantly shorter than that of conventional liver transplant cases (p = 0.001).ConclusionThe application of IFLT technology could contribute to improving the medical service performance of the organ transplant department. Meanwhile, the DRGs tool may help transplant departments to coordinate the future delivery planning of medical service

    HIV-1 Membrane-Proximal External Region Fused to Diphtheria Toxin Domain-A Elicits 4E10-Like Antibodies in Mice.

    Get PDF
    The production of broadly neutralizing antibodies (bNAbs) is a major goal in the development of an HIV-1 vaccine. The membrane-proximal external region (MPER) of gp41, which plays a critical role in the virus membrane fusion process, is highly conserved and targeted by bNAbs 2F5, 4E10, and 10E8. As such, MPER could be a promising epitope for vaccine design. In this study, diphtheria toxin domain A (CRM197, amino acids 1-191) was used as a scaffold to display the 2F5 and 4E10 epitopes of MPER, named CRM197-A-2F5 and CRM197-A-4E10. Modest neutralizing activities were detected against HIV-1 clade B and D viruses in the sera from mice immunized with CRM197-A-4E10. Monoclonal antibodies raised from CRM197-A-4E10 could neutralize several HIV-1 strains, and epitope-mapping analysis indicated that some antibodies recognized the same amino acids as 4E10. Collectively, we show that 4E10-like antibodies can be induced by displaying MPER epitopes using an appropriate scaffold. These results provide insights for HIV-1 MPER-based immunogens design

    YY1 modulates taxane response in epithelial ovarian cancer

    Get PDF
    The results of this study show that a high YY1 gene signature (characterized by coordinate elevated expression of transcription factor YY1 and putative YY1 target genes) within serous epithelial ovarian cancers is associated with enhanced response to taxane-based chemotherapy and improved survival. If confirmed in a prospective study, these results have important implications for the potential future use of individualized therapy in treating patients with ovarian cancer. Identification of the YY1 gene signature profile within a tumor prior to initiation of chemotherapy may provide valuable information about the anticipated response of these tumors to taxane-based drugs, leading to better informed decisions regarding chemotherapeutic choice. Survival of ovarian cancer patients is largely dictated by their response to chemotherapy, which depends on underlying molecular features of the malignancy. We previously identified YIN YANG 1 (YY1) as a gene whose expression is positively correlated with ovarian cancer survival. Herein we investigated the mechanistic basis of this association. Epigenetic and genetic characteristics of YY1 in serous epithelial ovarian cancer (SEOC) were analyzed along with YY1 mRNA and protein. Patterns of gene expression in primary SEOC and in the NCI60 database were investigated using computational methods. YY1 function and modulation of chemotherapeutic response in vitro was studied using siRNA knockdown. Microarray analysis showed strong positive correlation between expression of YY1 and genes with YY1 and transcription factor E2F binding motifs in SEOC and in the NCI60 cancer cell lines. Clustering of microarray data for these genes revealed that high YY1/E2F3 activity positively correlates with survival of patients treated with the microtubule stabilizing drug paclitaxel. Increased sensitivity to taxanes, but not to DNA crosslinking platinum agents, was also characteristic of NCI60 cancer cell lines with a high YY1/E2F signature. YY1 knockdown in ovarian cancer cell lines results in inhibition of anchorage-independent growth, motility and proliferation, but also increases resistance to taxanes, with no effect on cisplatin sensitivity. These results, together with the prior demonstration of augmentation of microtubule-related genes by E2F3, suggest that enhanced taxane sensitivity in tumors with high YY1/E2F activity may be mediated by modulation of putative target genes with microtubule function
    • …
    corecore