100 research outputs found

    Prediction of the Impact of CYP2C19 Polymorphism on Drug-Drug Interaction between Voriconazole and Tacrolimus Using Physiologically-Based Pharmacokinetic Modelling

    Get PDF
    Voriconazole increases tacrolimus blood concentration significantly when coadministrated. The recommendation of reducing tacrolimus to 1/3 in voriconazole package insert seems not to be satisfactory in clinical practice. In vitro studies demonstrated that the magnitude of inhibition depends on the concentration of voriconazole, while voriconazole exposure is determined by the genotype status of CYP2C19. CYP2C19 gene polymorphism challenges the management of drug-drug interactions(DDIs) between voriconazole and tacrolimus. This work aimed to predict the impact of CYP2C19 polymorphism on the DDIs by using physiologically based pharmacokinetics (PBPK) models. The precision of the developed voriconazole and tacrolimus models was reasonable by evaluating the pharmacokinetic parameters fold error, such as AUC0-24, Cmax and tmax. Voriconazole increased tacrolimus concentration immediately in all population. The simulated duration of DDIs disappearance after voriconazole withdrawal were 146h, 90h and 66h in poor metabolizers (PMs), intermediate metabolizers (IMs) and extensive metabolizers(EMs), respectively. The developed and optimized PBPK models in this study can be applied to assit the dose adjustment for tacrolimus with and without voriconazole

    Intracellular Uptake: A Possible Mechanism for Silver Engineered Nanoparticle Toxicity to a Freshwater Alga Ochromonas danica

    Get PDF
    The behavior and toxicity of silver engineered nanoparticles (Ag-ENs) to the mixotrophic freshwater alga Ochromonas danica were examined in the present study to determine whether any other mechanisms are involved in their algal toxicity besides Ag+ liberation outside the cells. Despite their good dispersability, the Ag-ENs were found to continuously aggregate and dissolve rapidly. When the initial nanoparticle concentration was lower than 10 µM, the total dissolved Ag+ concentration ([Ag+]T) in the suspending media reached its maximum after 1 d and then decreased suggesting that Ag+ release might be limited by the nanoparticle surface area under these conditions. Furthermore, Ag-EN dissolution extent remarkably increased in the presence of glutathione. In the Ag-EN toxicity experiment, glutathione was also used to eliminate the indirect effects of Ag+ that was released. However, remarkable toxicity was still observed although the free Ag+ concentration in the media was orders of magnitude lower than the non-observed effect concentration of Ag+ itself. Such inhibitive effects were mitigated when more glutathione was added, but could never be completely eliminated. Most importantly, we demonstrate, for the first time, that Ag-ENs can be taken in and accumulated inside the algal cells, where they exerted their toxic effects. Therefore, nanoparticle internalization may be an alternative pathway through which algal growth can be influenced

    A Paul Trap Mass Analyzer Consisting of Two Microfabricated Electrode Plates

    Get PDF
    We report the design and performance of a novel radiofrequency (RF) ion trap mass analyzer, the planar Paul trap, in which a quadrupolar potential distribution is made between two electrode plates. Each plate consists of a series of concentric, lithographically deposited 100-micrometer-wide metal rings, overlaid with a thin resistive layer. To each ring is applied a different RF amplitude, such that the trapping field produced is similar to that of the conventional Paul trap. The accuracy and shape of the electric fields in this trap are not limited by electrode geometry nor machining precision, as is the case in traps made with metal electrodes. The use of two microfabricated plates for ion trap construction presents a lower-cost alternative to conventional ion traps, with additional advantages in electrode alignment, electric field optimization, and ion trap miniaturization. Experiments demonstrate the effects of ion ejection mode and scan rate on mass resolution for several small organic compounds. The current instrument has a mass range up to ~180 Thompsons (Th), with better than unit mass resolution over the whole range

    Solution-processed quasi-two-dimensional perovskite light-emitting diodes using organic small molecular electron transporting layer

    Get PDF
    In this paper, all-solution-processed LEDs using quasi-two-dimensional perovskites with organic small molecular electron transporting materials (ETMs) are successfully fabricated

    The impact of intraarterial, intravenous, and combined tirofiban on endovascular treatment for acute intracranial atherosclerotic occlusion

    Get PDF
    Background and purposeAdjunctive tirofiban administration in patients undergoing endovascular treatment (EVT) for acute large vessel occlusion (LVO) has been investigated in several studies. However, the findings are conflict. This study aimed to compare the effect of different administration pathways of tirofiban on patients undergoing EVT for acute LVO with intracranial atherosclerotic disease (ICAD).MethodsPatients were selected from the ANGEL-ACT Registry (Endovascular Treatment Key Technique and Emergency Workflow Improvement of Acute Ischemic Stroke: A Prospective Multicenter Registry Study) and divided into four groups: intra-arterial (IA), intravenous (IV), and intra-arterial plus intravenous (IA+IV) and non-tirofiban. The primary outcome was 90-day ordinal modified Rankin Scale (mRS) score, and the secondary outcomes included the rates of mRS 0–1, 0–2, and 0–3 at 90-day, successful recanalization. The safety outcomes were symptomatic intracranial hemorrhage (sICH) and other safety endpoints. The multivariable logistic regression models adjusting for potential baseline confounders were performed to compare the outcomes. A propensity score matching (PSM) with a 1:1:1:1 ratio was conducted among four groups, and the outcomes were then compared in the post-matched population.ResultsA total of 502 patients were included, 80 of which were in the IA-tirofiban group, 73 in IV-tirofiban, 181 in (IA+IV)-tirofiban group, and 168 in the non-tirofiban group. The median (IQR) 90-day mRS score in the four groups of IA, IV, IA+IV, and non-tirofiban was, respectively 3(0–5) vs. 1(0–4) vs. 1(0–4) vs. 3(0–5). The adjusted common odds ratio (OR) for 90-day ordinal modified Rankin Scale distribution with IA-tirofiban vs. non-tirofiban was 0.77 (95% CI, 0.45–1.30, P = 0.330), with IV-tirofiban vs. non-tirofiban was 1.36 (95% CI, 0.78–2.36, P = 0.276), and with (IA+IV)-tirofiban vs. non-tirofiban was 1.03 (95% CI, 0.64–1.64, P = 0.912). The adjusted OR for mRS 0–1 and mRS 0–2 at 90-day with IA-tirofiban vs. non-tirofiban was, respectively 0.51 (95% CI, 0.27–0.98, P = 0.042) and 0.50 (95% CI, 0.26–0.94, P = 0.033). The other outcomes of each group were similar with non-tirofiban group, all P was >0.05. After PSM, the common odds ratio (OR) for 90-day ordinal modified Rankin Scale distribution with IA-tirofiban vs. non-tirofiban was 0.41 (95% CI, 0.18–0.94, P = 0.036), and the OR for mRS 0–1 and mRS 0–2 at 90-day with IA-tirofiban vs. non-tirofiban was, respectively 0.28 (95% CI, 0.11–0.74, P = 0.011) and 0.25 (95% CI, 0.09–0.67, P = 0.006).ConclusionsIntra-arterial administration of tirofiban was associated with worse outcome than non-tirofiban, which suggested that intra-arterial tirofiban had a harmful effect on patients undergoing EVT for ICAD-LVO.Clinical trial registrationhttp://www.clinicaltrials.gov, Unique identifier: NCT03370939

    Segawa syndrome caused by TH gene mutation and its mechanism

    Get PDF
    Dopa-responsive dystonia (DRD), also known as Segawa syndrome, is a rare neurotransmitter disease. The decrease in dopamine caused by tyrosine hydroxylase (TH) gene mutation may lead to dystonia, tremor and severe encephalopathy in children. Although the disease caused by recessive genetic mutation of the tyrosine hydroxylase (TH) gene is rare, we found that the clinical manifestations of seven children with tyrosine hydroxylase gene mutations are similar to dopa-responsive dystonia. To explore the clinical manifestations and possible pathogenesis of the disease, we analyzed the clinical data of seven patients. Next-generation sequencing showed that the TH gene mutation in three children was a reported homozygous mutation (c.698G>A). At the same time, two new mutations of the TH gene were found in other children: c.316_317insCGT, and c.832G>A (p.Ala278Thr). We collected venous blood from four patients with Segawa syndrome and their parents for real-time quantitative polymerase chain reaction analysis of TH gene expression. We predicted the structure and function of proteins on the missense mutation iterative thread assembly refinement (I-TASSER) server and studied the conservation of protein mutation sites. Combined with molecular biology experiments and related literature analysis, the qPCR results of two patients showed that the expression of the TH gene was lower than that in 10 normal controls, and the expression of the TH gene of one mother was lower than the average expression level. We speculated that mutation in the TH gene may clinically manifest by affecting the production of dopamine and catecholamine downstream, which enriches the gene pool of Segawa syndrome. At the same time, the application of levodopa is helpful to the study, diagnosis and treatment of Segawa syndrome

    Unravelling surface and interfacial structures of a metal–organic framework by transmission electron microscopy

    Full text link
    Metal-organic frameworks (MOFs) are crystalline porous materials with designable topology, porosity and functionality, having promising applications in gas storage and separation, ion conduction and catalysis. It is challenging to observe MOFs with transmission electron microscopy (TEM) due to the extreme instability of MOFs upon electron beam irradiation. Here, we use a direct-detection electron-counting camera to acquire TEM images of the MOF ZIF-8 with an ultralow dose of 4.1 electrons per square ångström to retain the structural integrity. The obtained image involves structural information transferred up to 2.1 Å, allowing the resolution of individual atomic columns of Zn and organic linkers in the framework. Furthermore, TEM reveals important local structural features of ZIF-8 crystals that cannot be identified by diffraction techniques, including armchair-type surface terminations and coherent interfaces between assembled crystals. These observations allow us to understand how ZIF-8 crystals self-assemble and the subsequent influence of interfacial cavities on mass transport of guest molecules
    corecore