376 research outputs found
Detecting the Influence of Spreading in Social Networks with Excitable Sensor Networks
Detecting spreading outbreaks in social networks with sensors is of great
significance in applications. Inspired by the formation mechanism of human's
physical sensations to external stimuli, we propose a new method to detect the
influence of spreading by constructing excitable sensor networks. Exploiting
the amplifying effect of excitable sensor networks, our method can better
detect small-scale spreading processes. At the same time, it can also
distinguish large-scale diffusion instances due to the self-inhibition effect
of excitable elements. Through simulations of diverse spreading dynamics on
typical real-world social networks (facebook, coauthor and email social
networks), we find that the excitable senor networks are capable of detecting
and ranking spreading processes in a much wider range of influence than other
commonly used sensor placement methods, such as random, targeted, acquaintance
and distance strategies. In addition, we validate the efficacy of our method
with diffusion data from a real-world online social system, Twitter. We find
that our method can detect more spreading topics in practice. Our approach
provides a new direction in spreading detection and should be useful for
designing effective detection methods
Control of Aphids with Qingfengmeisu
We started our aphid control research with Qingfengmeisu in 1978. The results of our studies are as follows.Originating text in Chinese.Citation: Wang, Laibao, Tang, Zhiming. (1982). Control of Aphids with Qingfengmeisu. Microbiology, 9(6), 253-255
Threshold Dynamics in Stochastic SIRS Epidemic Models with Nonlinear Incidence and Vaccination
In this paper, the dynamical behaviors for a stochastic SIRS epidemic model with nonlinear incidence and vaccination are investigated. In the models, the disease transmission coefficient and the removal rates are all affected by noise. Some new basic properties of the models are found. Applying these properties, we establish a series of new threshold conditions on the stochastically exponential extinction, stochastic persistence, and permanence in the mean of the disease with probability one for the models. Furthermore, we obtain a sufficient condition on the existence of unique stationary distribution for the model. Finally, a series of numerical examples are introduced to illustrate our main theoretical results and some conjectures are further proposed
- ā¦