2,513 research outputs found
PS-TRUST: Provably Secure Solution for Truthful Double Spectrum Auctions
Truthful spectrum auctions have been extensively studied in recent years.
Truthfulness makes bidders bid their true valuations, simplifying greatly the
analysis of auctions. However, revealing one's true valuation causes severe
privacy disclosure to the auctioneer and other bidders. To make things worse,
previous work on secure spectrum auctions does not provide adequate security.
In this paper, based on TRUST, we propose PS-TRUST, a provably secure solution
for truthful double spectrum auctions. Besides maintaining the properties of
truthfulness and special spectrum reuse of TRUST, PS-TRUST achieves provable
security against semi-honest adversaries in the sense of cryptography.
Specifically, PS-TRUST reveals nothing about the bids to anyone in the auction,
except the auction result. To the best of our knowledge, PS-TRUST is the first
provably secure solution for spectrum auctions. Furthermore, experimental
results show that the computation and communication overhead of PS-TRUST is
modest, and its practical applications are feasible.Comment: 9 pages, 4 figures, submitted to Infocom 201
Dilute magnetic semiconductor and half metal behaviors in 3d transition-metal doped black and blue phosphorenes: a first-principles study
We present first-principles density-functional calculations for the
structural, electronic, and magnetic properties of substitutional 3d transition
metal (TM) impurities in two-dimensional black and blue phosphorenes. We find
that the magnetic properties of such substitutional impurities can be
understood in terms of a simple model based on the Hund's rule. The TM-doped
black phosphorenes with Ti, V, Cr, Mn, Fe and Ni impurities show dilute
magnetic semiconductor (DMS) properties while those with Sc and Co impurities
show nonmagnetic properties. On the other hand, the TM-doped blue phosphorenes
with V, Cr, Mn and Fe impurities show DMS properties, those with Ti and Ni
impurities show half-metal properties, whereas Sc and Co doped systems show
nonmagnetic properties. We identify two different regimes depending on the
occupation of the hybridized electronic states of TM and phosphorous atoms: (i)
bonding states are completely empty or filled for Sc- and Co-doped black and
blue phosphorenes, leading to non-magnetic; (ii) non-bonding d states are
partially occupied for Ti-, V-, Cr-, Mn-, Fe- and Ni-doped black and blue
phosphorenes, giving rise to large and localized spin moments. These results
provide a new route for the potential applications of dilute magnetic
semiconductor and half-metal in spintronic devices by employing black and blue
phosphorenes.Comment: 9 pages, 7 figure
Far-Field Plasmonic Resonance Enhanced Nano-Particle Image Velocimetry within a Micro Channel
In this paper, a novel far-field plasmonic resonance enhanced
nanoparticle-seeded Particle Image Velocimetry (nPIV) has been demonstrated to
measure the velocity profile in a micro channel. Chemically synthesized silver
nanoparticles have been used to seed the flow in the micro channel. By using
Discrete Dipole Approximation (DDA), plasmonic resonance enhanced light
scattering has been calculated for spherical silver nanoparticles with
diameters ranging from 15nm to 200nm. Optimum scattering wavelength is
specified for the nanoparticles in two media: water and air. The
diffraction-limited plasmonic resonance enhanced images of silver nanoparticles
at different diameters have been recorded and analyzed. By using standard PIV
techniques, the velocity profile within the micro channel has been determined
from the images.Comment: submitted to Review of Scientific Instrument
Recommended from our members
Predicting taxonomic and functional structure of microbial communities in acid mine drainage.
Predicting the dynamics of community composition and functional attributes responding to environmental changes is an essential goal in community ecology but remains a major challenge, particularly in microbial ecology. Here, by targeting a model system with low species richness, we explore the spatial distribution of taxonomic and functional structure of 40 acid mine drainage (AMD) microbial communities across Southeast China profiled by 16S ribosomal RNA pyrosequencing and a comprehensive microarray (GeoChip). Similar environmentally dependent patterns of dominant microbial lineages and key functional genes were observed regardless of the large-scale geographical isolation. Functional and phylogenetic β-diversities were significantly correlated, whereas functional metabolic potentials were strongly influenced by environmental conditions and community taxonomic structure. Using advanced modeling approaches based on artificial neural networks, we successfully predicted the taxonomic and functional dynamics with significantly higher prediction accuracies of metabolic potentials (average Bray-Curtis similarity 87.8) as compared with relative microbial abundances (similarity 66.8), implying that natural AMD microbial assemblages may be better predicted at the functional genes level rather than at taxonomic level. Furthermore, relative metabolic potentials of genes involved in many key ecological functions (for example, nitrogen and phosphate utilization, metals resistance and stress response) were extrapolated to increase under more acidic and metal-rich conditions, indicating a critical strategy of stress adaptation in these extraordinary communities. Collectively, our findings indicate that natural selection rather than geographic distance has a more crucial role in shaping the taxonomic and functional patterns of AMD microbial community that readily predicted by modeling methods and suggest that the model-based approach is essential to better understand natural acidophilic microbial communities
Molecular Cloning, Characterization, and mRNA Expression of Hemocyanin Subunit in Oriental River Prawn Macrobrachium nipponense
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Hemocyanin is a copper-containing protein with immune function against disease. In this study, a hemocyanin subunit named MnHc-1 was cloned from Macrobrachium nipponense. The full-length cDNA of MnHc-1 was 2,163 bp with a 2,028-bp open reading frame (ORF) encoding a polypeptide of 675 amino acids. The MnHc-1 mRNA was expressed in the hepatopancreas, gill, hemocytes, intestine, ovary, and stomach, with the highest level in the hepatopancreas. In the infection trial, the MnHc-1 mRNA transcripts in the hemocytes were significantly downregulated at 3 h after injection of Aeromonas hydrophila and then upregulated at 6 h and 12 h, followed by a gradual recovery from 24 to 48 h. The MnHc-1 transcriptional expression in the hepatopancreas was measured after M. nipponense were fed seven diets with 2.8, 12.2, 20.9, 29.8, 43.1, 78.9, and 157.1 mg Cu kg−1 for 8 weeks, respectively. The level of MnHc-1 mRNA was significantly higher in the prawns fed 43.1–157.1 mg Cu kg−1 diet than in that fed 2.8–29.8 mg Cu kg−1 diet. This study indicated that the MnHc-1 expression can be affected by dietary copper and the hemocyanin may potentially participate in the antibacterial defense of M. nipponense
hSef potentiates EGF-mediated MAPK signaling through affecting EGFR trafficking and degradation
Sef (similar expression to fgf genes) was identified as an effective antagonist of fibroblast growth factor (FGF) in vertebrates. Previous reports have demonstrated that Sef interacts with FGF receptors (FGFRs) and inhibits FGF signaling, however, its role in regulating epidermal growth factor receptor (EGFR) signaling remains unclear. In this report, we found that hSef localizes to the plasma membrane (PM) and is subjected to rapid internalization and well localizes in early/recycling endosomes while poorly in late endosomes/lysosomes. We observed that hSef interacts and functionally colocalizes with EGFR in early endosomes in response to EGF stimulation. Importantly, we demonstrated that overexpression of hSef attenuates EGFR degradation and potentiates EGF-mediated mitogen-activated protein kinase (MAPK) signaling by interfering EGFR trafficking. Finally, our data showed that, with overexpression of hSef, elevated levels of Erk phosphorylation and differentiation of rat pheochromocytoma (PC12) cells occur in response to EGF stimulation. Taken together, these data suggest that hSef plays a positive role in the EGFR-mediated MAPK signaling pathway. This report, for the first time, reveals opposite roles for Sef in EGF and FGF signalings
Resistance Assessment for Oxathiapiprolin in Phytophthora capsici and the Detection of a Point Mutation (G769W) in PcORP1 that Confers Resistance
The potential for oxathiapiprolin resistance in Phytophthora capsici was evaluated. The baseline sensitivities of 175 isolates to oxathiapiprolin were initially determinated and found to conform to a unimodal curve with a mean EC50 value of 5.61×10-4 μg/ml. Twelve stable oxathiapiprolin-resistant mutants were generated by fungicide adaption in two sensitive isolates, LP3 and HNJZ10. The fitness of the LP3-mutants was found to be similar to or better than that of the parental isolate LP3, while the HNJZ10-mutants were found to have lost the capacity to produce zoospores. Taken together these results suggest that the risk of P. capsici developing resistance to oxathiapiprolin is moderate. Comparison of the PcORP1 genes in the LP3-mutants and wild-type parental isolate, which encode the target protein of oxathiapiprolin, revealed that a heterozygous mutation caused the amino acid substitution G769W. Transformation and expression of the mutated PcORP1-769W allele in the sensitive wild-type isolate BYA5 confirmed that the mutation in PcORP1 was responsible for the observed oxathiapiprolin resistance. Finally diagnostic tests including As-PCR and CAPs were developed to detect the oxathiapiprolin resistance resulting from the G769W point mutation in field populations of P. capsici
- …
