194 research outputs found

    Is Nash Equilibrium Approximator Learnable?

    Get PDF
    In this paper, we investigate the learnability of the function approximator that approximates Nash equilibrium (NE) for games generated from a distribution. First, we offer a generalization bound using the Probably Approximately Correct (PAC) learning model. The bound describes the gap between the expected loss and empirical loss of the NE approximator. Afterward, we prove the agnostic PAC learnability of the Nash approximator. In addition to theoretical analysis, we demonstrate an application of NE approximator in experiments. The trained NE approximator can be used to warm-start and accelerate classical NE solvers. Together, our results show the practicability of approximating NE through function approximation.Comment: Accepted by AAMAS 202

    Direct, Noncatalytic Mechanism of IKK Inhibition by A20

    Get PDF
    A20 is a potent anti-inflammatory protein that inhibits NF-κB, and A20 dysfunction is associated with autoimmunity and B-cell lymphoma. A20 harbors a deubiquitination enzyme domain and can employ multiple mechanisms to antagonize ubiquitination upstream of NEMO, a regulatory subunit of the IκB kinase complex (IKK). However, direct evidence of IKK inhibition by A20 is lacking, and the inhibitory mechanism remains poorly understood. Here we show that A20 can directly impair IKK activation without deubiquitination or impairment of ubiquitination enzymes. We find that polyubiquitin binding by A20, which is largely dependent on A20’s seventh zinc finger motif (ZnF7), induces specific binding to NEMO. Remarkably, this ubiquitin-induced recruitment of A20 to NEMO is sufficient to block IKK phosphorylation by its upstream kinase TAK1. Our results suggest a non-catalytic mechanism of IKK inhibition by A20 and a means by which polyubiquitin chains can specify a signaling outcome

    Towards Layer-Selective Quantum Spin Hall Channels in Weak Topological Insulator Bi4Br2I2

    Full text link
    Weak topological insulators, constructed by stacking quantum spin Hall insulators with weak interlayer coupling, offer promising quantum electronic applications through topologically nontrivial edge channels. However, the currently available weak topological insulators are stacks of the same quantum spin Hall layer with translational symmetry in the out-of-plane direction, leading to the absence of the channel degree of freedom for edge states. Here, we study a candidate weak topological insulator, Bi4Br2I2, which is alternately stacked by three different quantum spin Hall insulators, each with tunable topologically non-trivial edge states. Our angle-resolved photoemission spectroscopy and first-principles calculations show that an energy gap opens at the crossing points of different Dirac cones correlated with different layers due to the interlayer interaction. This is essential to achieve the tunability of topological edge states as controlled by varying the chemical potential. Our work offers a perspective for the construction of tunable quantized conductance devices for future spintronic applications

    Ipomoeassin F Binds Sec61α to Inhibit Protein Translocation

    Get PDF
    Funding Information: We thank the Arkansas Nano & Bio Materials Characterization Facility at the Institute for Nano Sciences & Engineering for our imaging studies, and Prof Yoshito Kishi (Harvard University) for the kind gift of synthetic mycolactone A/B used by S.H. and R.S. W.S. is supported by Grant No. R15GM116032 from the National Institute of General Medical Sciences of the National Institutes of Health (NIH) and startup funds from the University of Arkansas. This work was also supported in part by Grant No. P30 GM103450 from the National Institute of General Medical Sciences of the NIH and by seed money from the Arkansas Biosciences Institute (ABI). S.O’K. is the recipient of a Biotechnology and Biological Sciences Research Council (BBSRC) Doctoral Training Programme Award (BB/J014478/ 1), and S.H. holds a Welcome Trust Investigator Award in Science (204957/Z/16/Z). The alpha-1 antitrypsin work was supported by the Alpha-1 Foundation (J.I. and M.J.I.). J.I. and M.J.H. were supported by the intramural program of NCATS, National Institutes of Health, projects 1ZIATR000048-03 (J.I.) and ZIATR000063-04 (M.J.H.). R.S. holds a Welcome Trust Investigator Award in Science (202843/Z/16/Z). C.D. received funding from the Institut Pasteur, the Institut National de la Santé et de la Recherche Med́ icale, and the Fondation Raoul Follereau. N.B.’s synthesis and chemical biology studies of mycolactone were supported by CNRS, Université de Strasbourg, Fondations Potier et Follereau, and the Investisse-ment d’Avenir (Idex Unistra). V.O.P. is supported by the Academy of Finland (Grants 289737 and 314672) and the Sigrid Juselius Foundation. Funding Information: We thank the Arkansas Nano & Bio Materials Characterization Facility at the Institute for Nano Sciences & Engineering for our imaging studies, and Prof Yoshito Kishi (Harvard University) for the kind gift of synthetic mycolactone A/B used by S.H. and R.S. W.S. is supported by Grant No. R15GM116032 from the National Institute of General Medical Sciences of the National Institutes of Health (NIH) and startup funds from the University of Arkansas. This work was also supported in part by Grant No. P30 GM103450 from the National Institute of General Medical Sciences of the NIH and by seed money from the Arkansas Biosciences Institute (ABI). S.O'K. is the recipient of a Biotechnology and Biological Sciences Research Council (BBSRC) Doctoral Training Programme Award (BB/J014478/1), and S.H. holds a Welcome Trust Investigator Award in Science (204957/Z/16/Z). The alpha-1 antitrypsin work was supported by the Alpha-1 Foundation (J.I. and M.J.I.). J.I. and M.J.H. were supported by the intramural program of NCATS, National Institutes of Health, projects 1ZIATR000048-03 (J.I.) and ZIATR000063-04 (M.J.H.). R.S. holds a Welcome Trust Investigator Award in Science (202843/Z/16/Z). C.D. received funding from the Institut Pasteur, the Institut National de la Sante et de la Recherche Medicale, and the Fondation Raoul Follereau. N.B.'s synthesis and chemical biology studies of mycolactone were supported by CNRS, Universite de Strasbourg, Fondations Potier et Follereau and the Investissement d'Avenir (Idex Unistra). V.O.P. is supported by the Academy of Finland (Grants 289737 and 314672) and the Sigrid Juselius Foundation. Publisher Copyright: © 2019 American Chemical Society.Ipomoeassin F is a potent natural cytotoxin that inhibits growth of many tumor cell lines with single-digit nanomolar potency. However, its biological and pharmacological properties have remained largely unexplored. Building upon our earlier achievements in total synthesis and medicinal chemistry, we used chemical proteomics to identify Sec61 alpha (protein transport protein Sec61 subunit alpha isoform 1), the pore-forming subunit of the Sec61 protein translocon, as a direct binding partner of ipomoeassin F in living cells. The interaction is specific and strong enough to survive lysis conditions, enabling a biotin analogue of ipomoeassin F to pull down Sec61 alpha from live cells, yet it is also reversible, as judged by several experiments including fluorescent streptavidin staining, delayed competition in affinity pulldown, and inhibition of TNF biogenesis after washout. Sec61 alpha forms the central subunit of the ER protein translocation complex, and the binding of ipomoeassin F results in a substantial, yet selective, inhibition of protein translocation in vitro and a broad ranging inhibition of protein secretion in live cells. Lastly, the unique resistance profile demonstrated by specific amino acid single-point mutations in Sec61 alpha provides compelling evidence that Sec61 alpha is the primary molecular target of ipomoeassin F and strongly suggests that the binding of this natural product to Sec61 alpha is distinctive. Therefore, ipomoeassin F represents the first plant-derived, carbohydrate-based member of a novel structural class that offers new opportunities to explore Sec61 alpha function and to further investigate its potential as a therapeutic target for drug discovery.Peer reviewe

    The ratio of systolic and diastolic pressure is associated with carotid and femoral atherosclerosis

    Get PDF
    BackgroundAlthough the impact of hypertension on carotid intima-media thickness (IMT) and plaques has been well established, its association with femoral IMT and plaques has not been extensively examined. In addition, the role of the ratio of systolic and diastolic pressure (SDR) in the subclinical atherosclerosis (AS) risk remains unknown. We assessed the relationship between SDR and carotid and femoral AS in a general population.MethodsA total of 7,263 participants aged 35–74 years enrolled from January 2019 to June 2021 in a southeast region of China were included in a cross-sectional study. Systolic and diastolic blood pressure (SBP and DBP) were used to define SDR. Ultrasonography was applied to assess the AS, including thickened IMT (TIMT) and plaque in the carotid and femoral arteries. Logistic regression and restricted cubic spline (RCS) models were the main approaches.ResultsThe prevalence of TIMT, plaque, and AS were 17.3%, 12.4%, and 22.7% in the carotid artery; 15.2%, 10.7%, and 19.5% in the femoral artery; and 23.8%, 17.9% and 30.0% in either the carotid or femoral artery, respectively. Multivariable logistic regression analysis found a significant positive association between high-tertile SDR and the higher risk of overall TIMT (OR = 1.28, 95% CI = 1.10–1.49), plaques (OR = 1.36, 95%CI = 1.16–1.61), or AS (OR = 1.36, 95% CI = 1.17–1.57), especially in the carotid artery. RCS analysis further revealed the observed positive associations were linear. Further analyses showed that as compared to the low-tertile SDR and non-hypertension group, high-tertile SDR was associated with increased risks of overall and carotid TIMT, plaques, or AS in both groups with or without hypertension.ConclusionsSDR is related to a higher risk of subclinical AS, regardless of hypertension or not, suggesting that as a readily obtainable index, SDR can contribute to providing additional predictive value for AS

    Associations between body composition profile and hypertension in different fatty liver phenotypes

    Get PDF
    BackgroundIt is currently unclear whether and how the association between body composition and hypertension varies based on the presence and severity of fatty liver disease (FLD).MethodsFLD was diagnosed using ultrasonography among 6,358 participants. The association between body composition and hypertension was analyzed separately in the whole population, as well as in subgroups of non-FLD, mild FLD, and moderate/severe FLD populations, respectively. The mediation effect of FLD in their association was explored.ResultsFat-related anthropometric measurements and lipid metabolism indicators were positively associated with hypertension in both the whole population and the non-FLD subgroup. The strength of this association was slightly reduced in the mild FLD subgroup. Notably, only waist-to-hip ratio and waist-to-height ratio showed significant associations with hypertension in the moderate/severe FLD subgroup. Furthermore, FLD accounted for 17.26% to 38.90% of the association between multiple body composition indicators and the risk of hypertension.ConclusionsThe association between body composition and hypertension becomes gradually weaker as FLD becomes more severe. FLD plays a significant mediating role in their association

    The 5th International Conference on Biomedical Engineering and Biotechnology (ICBEB 2016)

    Get PDF

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO
    corecore