113 research outputs found

    Stability Results for a Class of Differential Equation and Application in Medicine

    Get PDF
    A Chemostat system incorporating hepatocellular carcinomas is discussed. The model generalizes the classical Chemostat model, and it assumes that the Chemostat is an increasing function of the concentration. The asymptotic behavior of solutions is determined. Sufficient conditions for the local and global asymptotic stability of equilibrium and numerical simulation are obtained, which is used to select the disease control tactics

    ZBTB20 Is a Sequence-Specific Transcriptional Repressor of Alpha-Fetoprotein Gene

    Get PDF
    Alpha-fetoprotein (AFP) represents a classical model system to study developmental gene regulation in mammalian cells. We previously reported that liver ZBTB20 is developmentally regulated and plays a central role in AFP postnatal repression. Here we show that ZBTB20 is a sequence-specific transcriptional repressor of AFP. By ELISA-based DNA-protein binding assay and conventional gel shift assay, we successfully identified a ZBTB20-binding site at -104/-86 of mouse AFP gene, flanked by two HNF1 sites and two C/EBP sites in the proximal promoter. Importantly, mutation of the core sequence in this site fully abolished its binding to ZBTB20 in vitro, as well as the repression of AFP promoter activity by ZBTB20. The unique ZBTB20 site was highly conserved in rat and human AFP genes, but absent in albumin genes. These help to explain the autonomous regulation of albumin and AFP genes in the liver after birth. Furthermore, we demonstrated that transcriptional repression of AFP gene by ZBTB20 was liver-specific. ZBTB20 was dispensable for AFP silencing in other tissues outside liver. Our data define a cognate ZBTB20 site in AFP promoter which mediates the postnatal repression of AFP gene in the liver

    Unzipping of black phosphorus to form zigzag-phosphorene nanobelts.

    Get PDF
    Funder: National Key R (D Program of China);2016YFA0200200;Funder: National Key D Program of China (2016YFA0200200) and National Natural Science Foundation of China (Nos. 51672154)Phosphorene, monolayer or few-layer black phosphorus, exhibits fascinating anisotropic properties and shows interesting semiconducting behavior. The synthesis of phosphorene nanosheets is still a hot topic, including the shaping of its two-dimensional structure into nanoribbons or nanobelts. Here we report electrochemical unzipping of single crystalline black phosphorus into zigzag-phosphorene nanobelts, as well as nanosheets and quantum dots, via an oxygen-driven mechanism. The experimental results agree well with our theoretical calculations. The calculation for the unzipping mechanism study suggests that interstitial oxygen-pairs are the critical intermediate species for generating zigzag-phosphorene nanobelts. Although phosphorene oxidation has been reported, lengthwise cutting is hitherto unreported. Our discovery of phosphorene cut upon oxidation represents a previously unknown mechanism for the formation of various dimensions of phosphorene nanostructures, especially zigzag-phosphorene nanobelts. It opens up a way for studying the quantum effects and electronic properties of zigzag-phosphorene nanobelts

    Non-targeted Metabolomic Study on Anti-aging Effect of Ripe Pu-erh Tea on D-Galactose-Induced Aging Mice

    Get PDF
    Delaying aging has become a hot spot of social concern and research. Our previous studies have shown that ripe Pu-erh tea can delay aging in mice by regulating the intestinal flora, but the metabolites in response to endogenous substances in mice are not clear. In this paper, the Morris water maze test was used to detect learning and memory capacity in control, D-galactose-induced aging, and ripe Pu-erh tea-treated mice. Non-targeted metabolomics was used to detect metabolites in the brain tissue and serum of mice from each group for the purpose of exploring the anti-aging effect of ripe Pu-erh tea on D-galactose-induced aging mice, screening differential metabolites among the three groups and analyzing the related metabolic pathways. The results showed that ripe Pu-erh tea improved learning capacity, and regulated 26 differential metabolites in the brain tissue of aging mice, mainly involved in the glycerophospholipid metabolism, vitamin B6 metabolism, histidine metabolism and purine metabolism pathways, among which the glycerophospholipid metabolism and histidine metabolism pathway were the most significant. A total of 11 differential metabolites were identified in serum, mainly involved in the metabolism of vitamin B6 and arachidonic acid, among which vitamin B6 metab olism pathway was the most significant. After the intervention with ripe Pu-erh tea, the contents of glycerophospholipid metabolites including phosphatidylcholine [PC (20:5/20:4)], phosphatidyl ethanlamine [PE (22:2/14:0)], phosphatidylserine [PS (20:5/18:1)] and lysophosphatidylcholine [LysoPC (18:2)], the histidine metabolite carnosine, and the vitamin B6 metabolite pyridoxal 5’-phosphate were significantly increased in aging mice. These results suggest that ripe Pu-erh tea can delay aging by regulating lipid and amino acid metabolism

    fNIRS-based brain functional response to robot-assisted training for upper-limb in stroke patients with hemiplegia

    Get PDF
    BackgroundRobot-assisted therapy (RAT) has received considerable attention in stroke motor rehabilitation. Characteristics of brain functional response associated with RAT would provide a theoretical basis for choosing the appropriate protocol for a patient. However, the cortical response induced by RAT remains to be fully elucidated due to the lack of dynamic brain functional assessment tools.ObjectiveTo guide the implementation of clinical therapy, this study focused on the brain functional responses induced by RAT in patients with different degrees of motor impairment.MethodsA total of 32 stroke patients were classified into a low score group (severe impairment, n = 16) and a high score group (moderate impairment, n = 16) according to the motor function of the upper limb and then underwent RAT training in assistive mode with simultaneous cerebral haemodynamic measurement by functional near-infrared spectroscopy (fNIRS). Functional connectivity (FC) and the hemisphere autonomy index (HAI) were calculated based on the wavelet phase coherence among fNIRS signals covering bilateral prefrontal, motor and occipital areas.ResultsSpecific cortical network response related to RAT was observed in patients with unilateral moderate-to-severe motor deficits in the subacute stage. Compared with patients with moderate dysfunction, patients with severe impairment showed a wide range of significant FC responses in the bilateral hemispheres induced by RAT with the assistive mode, especially task-related involvement of ipsilesional supplementary motor areas.ConclusionUnder assisted mode, RAT-related extensive cortical response in patients with severe dysfunction might contribute to brain functional organization during motor performance, which is considered the basic neural substrate of motor-related processes. In contrast, the limited cortical response related to RAT in patients with moderate dysfunction may indicate that the training intensity needs to be adjusted in time according to the brain functional state. fNIRS-based assessment of brain functional response assumes great importance for the customization of an appropriate protocol training in the clinical practice

    CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark

    Full text link
    Artificial Intelligence (AI), along with the recent progress in biomedical language understanding, is gradually changing medical practice. With the development of biomedical language understanding benchmarks, AI applications are widely used in the medical field. However, most benchmarks are limited to English, which makes it challenging to replicate many of the successes in English for other languages. To facilitate research in this direction, we collect real-world biomedical data and present the first Chinese Biomedical Language Understanding Evaluation (CBLUE) benchmark: a collection of natural language understanding tasks including named entity recognition, information extraction, clinical diagnosis normalization, single-sentence/sentence-pair classification, and an associated online platform for model evaluation, comparison, and analysis. To establish evaluation on these tasks, we report empirical results with the current 11 pre-trained Chinese models, and experimental results show that state-of-the-art neural models perform by far worse than the human ceiling. Our benchmark is released at \url{https://tianchi.aliyun.com/dataset/dataDetail?dataId=95414&lang=en-us}
    • …
    corecore