3 research outputs found

    Ultrahigh Throughput Silicon Nanomanufacturing by Simultaneous Reactive Ion Synthesis and Etching

    No full text
    One-dimensional nanostructures, such as nanowhisker, nanorod, nanowire, nanopillar, nanocone, nanotip, nanoneedle, have attracted significant attentions in the past decades owing to their numerous applications in electronics, photonics, energy conversion and storage, and interfacing with biomolecules and living cells. The manufacturing of nanostructured devices relies on either bottom-up approaches such as synthesis or growth process or top-down approaches such as lithography or etching process. Here we report a unique, synchronized, and simultaneous top-down and bottom-up nanofabrication approach called simultaneous plasma enhanced reactive ion synthesis and etching (SPERISE). For the first time the atomic addition and subtraction of nanomaterials are concurrently observed and precisely controlled in a single-step process permitting ultrahigh-throughput, lithography-less, wafer-scale, and room-temperature nanomanufacturing. Rapid low-cost manufacturing of high-density, high-uniformity, light-trapping nanocone arrays was demonstrated on single crystalline and polycrystalline silicon wafers, as well as amorphous silicon thin films. The proposed nanofabrication mechanisms also provide a general guideline to designing new SPERISE methods for other solid-state materials besides silicon

    DNA-Directed Assembly of Asymmetric Nanoclusters Using Janus Nanoparticles

    No full text
    Asymmetric assembly of nanomaterials has attracted broad interests because of their unique anisotropic properties that are different from those based on the more widely reported symmetric assemblies. Despite the potential advantages, programmable fabrication of asymmetric structure in nanoscale remains a challenge. We report here a DNA-directed approach for the assembly of asymmetric nanoclusters using Janus nanoparticles as building blocks. DNA-functionalized spherical gold nanoparticles (AuNSs) can be selectively attached onto two different hemispheres of DNA-functionalized Janus nanoparticle (JNP) through DNA hybridization. Complementary and invasive DNA strands have been used to control the degree and reversibility of the assembly process through programmable base-pairing interactions, resulting in a series of modular and asymmetric nanostructures that allow systematic study of the size-dependent assembly process. We have also shown that the attachment of the AuNSs onto the gold surface of the Janus nanoparticle results in red shifting of the UV–vis and plasmon resonance spectra

    Mapping genomic loci implicates genes and synaptic biology in schizophrenia

    Full text link
    Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies
    corecore