151 research outputs found

    PHYFU: Fuzzing Modern Physics Simulation Engines

    Full text link
    A physical simulation engine (PSE) is a software system that simulates physical environments and objects. Modern PSEs feature both forward and backward simulations, where the forward phase predicts the behavior of a simulated system, and the backward phase provides gradients (guidance) for learning-based control tasks, such as a robot arm learning to fetch items. This way, modern PSEs show promising support for learning-based control methods. To date, PSEs have been largely used in various high-profitable, commercial applications, such as games, movies, virtual reality (VR), and robotics. Despite the prosperous development and usage of PSEs by academia and industrial manufacturers such as Google and NVIDIA, PSEs may produce incorrect simulations, which may lead to negative results, from poor user experience in entertainment to accidents in robotics-involved manufacturing and surgical operations. This paper introduces PHYFU, a fuzzing framework designed specifically for PSEs to uncover errors in both forward and backward simulation phases. PHYFU mutates initial states and asserts if the PSE under test behaves consistently with respect to basic Physics Laws (PLs). We further use feedback-driven test input scheduling to guide and accelerate the search for errors. Our study of four PSEs covers mainstream industrial vendors (Google and NVIDIA) as well as academic products. We successfully uncover over 5K error-triggering inputs that generate incorrect simulation results spanning across the whole software stack of PSEs.Comment: This paper is accepted at The 38th IEEE/ACM International Conference on Automated Software Engineering, a.k.a. ASE 2023. Please cite the published version as soon as this paper appears in the conference publication

    Learning Agent Communication under Limited Bandwidth by Message Pruning

    Full text link
    Communication is a crucial factor for the big multi-agent world to stay organized and productive. Recently, Deep Reinforcement Learning (DRL) has been applied to learn the communication strategy and the control policy for multiple agents. However, the practical \emph{\textbf{limited bandwidth}} in multi-agent communication has been largely ignored by the existing DRL methods. Specifically, many methods keep sending messages incessantly, which consumes too much bandwidth. As a result, they are inapplicable to multi-agent systems with limited bandwidth. To handle this problem, we propose a gating mechanism to adaptively prune less beneficial messages. We evaluate the gating mechanism on several tasks. Experiments demonstrate that it can prune a lot of messages with little impact on performance. In fact, the performance may be greatly improved by pruning redundant messages. Moreover, the proposed gating mechanism is applicable to several previous methods, equipping them the ability to address bandwidth restricted settings.Comment: accepted as a regular paper with poster presentation @ AAAI20. arXiv admin note: text overlap with arXiv:1903.0556

    Regulatory T Cells and Acute Lung Injury: Cytokines, Uncontrolled Inflammation, and Therapeutic Implications

    Get PDF
    Acute respiratory distress syndrome/acute lung injury (ALI) was described in 1967. The uncontrolled inflammation is a central issue of the syndrome. The regulatory T cells (Tregs), formerly known as suppressor T cells, are a subpopulation of T cells. Tregs indirectly limits immune inflammation-inflicted tissue damage by employing multiple mechanisms and creating the appropriate immune environment for successful tissue repair. And it plays a central role in the resolution of ALI. Accordingly, for this review, we will focus on Treg populations which are critical for inflammatory immunity of ALI, and the effect of interaction between Treg subsets and cytokines on ALI. And then explore the possibility of cytokines as beneficial factors in inflammation resolution of ALI

    Sex plays a role in the construction of epiphytic bacterial communities on the algal bodies and receptacles of Sargassum thunbergii

    Get PDF
    The community structures of epiphytic bacteria on the surface of macroalgae are closely related to their host algae, but there is a lack of research on the differences between the epiphytic bacterial communities of male and female algae and their reproductive tissues. In this study, high-throughput sequencing was used to compare epiphytic bacterial community structures on the intertidal macroalgae Sargassum thunbergii and their receptacles between male and female samples. The epiphytic bacteria on the male and female algal bodies and receptacles had similar community structures with a large number of shared bacteria, but the samples clearly clustered separately, and the abundances of dominant taxa, specific bacteria, and indicator species differed, indicating that epiphytic bacterial communities differed significantly between the male and female S. thunbergii and their receptacles. In addition, the abundance of many predicted functional genes was significantly different between epiphytic bacteria on male and female algal bodies and receptacles, especially metabolism-related genes, and the abundances of predicted functional genes of epiphytic bacteria were significantly higher on both types of male samples than on female samples. Our study confirmed that the sex of the host algae influenced the epiphytic bacterial community structures on algae and algal reproductive tissues, and this role was mainly related to the host metabolism. The results reveal the role of host plant sex in the formation of epiphytic bacterial communities. These findings are helpful for obtaining an in-depth understanding of the construction mechanism of algae-associated bacteria
    • …
    corecore