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Acute respiratory distress syndrome/acute lung injury (ALI) was described in 1967. The 
uncontrolled inflammation is a central issue of the syndrome. The regulatory T  cells 
(Tregs), formerly known as suppressor T  cells, are a subpopulation of T  cells. Tregs 
indirectly limits immune inflammation-inflicted tissue damage by employing multiple 
mechanisms and creating the appropriate immune environment for successful tissue 
repair. And it plays a central role in the resolution of ALI. Accordingly, for this review, we 
will focus on Treg populations which are critical for inflammatory immunity of ALI, and the 
effect of interaction between Treg subsets and cytokines on ALI. And then explore the 
possibility of cytokines as beneficial factors in inflammation resolution of ALI.

Keywords: regulatory T cells, acute lung injury, acute respiratory distress syndrome, uncontrolled inflammation, 
cytokines

iNTRODUCTiON

After the initial description of acute respiratory distress syndrome (ARDS) (1967), great progress 
has been made in the study of the pathophysiology and pathogenesis of acute lung injury (ALI) 
(1–5), and much has been learned about the pathogenesis of lung injury in ARDS. Uncontrolled 
inflammation is a central issue in ALI, and understanding how this is regulated is important for 
developing new treatment strategies for limiting excessive inflammation.

Throughout human life, T cell system adjusts to the transfer of resources and needs, resulting in 
a fundamentally reorganized immune system in each individual (6). In ALI, central to these issues 
is the large variety of T cells implicated in the pathobiology, pathophysiology, and integration of 
innate and adaptive immunity leading to uncontrolled pulmonary inflammation. Regulatory T cells 
(Tregs) are a special type of T cell. It could restrict inflammation-induced tissue damage via multiple 
mechanisms indirectly, such as their anti-inflammatory and antiapoptotic abilities (7), to create an 
appropriate immune microenvironment for the repairing and regeneration of tissue (8). And it is 
possible that a kernel mechanism of inhibition may be commonly used by Tregs at any location (e.g., 
spleen, blood, and lung) or in any inflammatory environment or phase (9, 10).

In order to understand the intricate and dynamic interactions between functionally activated 
Tregs and the pathophysiology of ALI, it is necessary to analyze the function of specialized T cells in 
uncontrolled inflammation, the ultimate goal being to identify new therapeutic approaches. In this 
review, we confine our discussion to Treg populations that play a critical role in the development of 
uncontrolled inflammation in ALI.
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UNCONTROLLeD iNFLAMMATiON:  
A CORe iSSUe iN ALi

At present, it is generally accepted that ALI is characterized by 
rapid alveolar injury, inflammation, cytokine induction, and 
neutrophil accumulation, with an emphasis on the mechanisms 
of injury to the lung endothelium and the alveolar epithelium. 
ARDS represents a stereotypic response to various etiologies. It 
progresses through different phases, starting with alveolar capil-
lary damage, progressing, to lung resolution, and culminating 
in a fibroproliferative phase. A hallmark of the damage seen 
in ARDS is that it is not uniform. A major challenge faced in a 
clustering approach is the heterogeneity of ALI, not only between 
patients but also in the same patient from a different cause or 
at different stages of the disease. All of these complex factors 
make it extremely difficult to improve the understanding about 
pathogenesis and treatment in ARDS.

The core mechanisms of ALI may involve trauma, tissue dam-
age, infection, shock (except for cardiogenic shock), or conserved 
microbial or molecular patterns that trigger receptors on innate 
immune cells. As a result, series of pro-inflammatory and anti-
inflammatory cytokines (or chemokine) are produced.

Recent meta-analyses about a network clinical trials of ARDS, 
including the measurements of blood biomarkers and clinical 
indicators, indicate that approximately 35% of patients with 
ARDS have high inflammatory endocrine, which related to higher 
mortality (11). Cytokines are proteins with pro-inflammatory 
or anti-inflammatory effects. Its biological effects need to be 
completed by autocrine and paracrine manner. Several studies 
have also reported a number of cytokines—such as TNF-α (12, 
13), IL-1β (14), IL-6 (15), IL-17 (16, 17), and IL-33 (18, 19)—were 
increased in acute stage of ARDS/ALI. Based on these findings, 
which point to the inflammatory complexity of this disease, ALI 
must be seen as a syndrome with many manifestations both 
systemic and pulmonary. By focusing on and exploring the 
uncontrolled inflammation of ARDS, we hope to come closer to 
defining its causes and development.

Treg: T CeLLS wiTH ANTi-
iNFLAMMATORY FUNCTiONS

Response to exogenous or endogenous insults, the host brings a 
range of changes characterized by transform in immune function 
and the produce of mediators called cytokines. A large number 
of studies have found that these immunoregulatory mechanisms 
are beneficial in that they prevent the worsening of injury and 
promote its repair (20–22). Data also show that inflammatory 
cytokines contribute to the development and progression of 
many immunologic and inflammatory diseases (23, 24), sug-
gesting that therapeutic actions may be promoted by regulating 
these mediators. But the immune system—divided into innate 
and adaptive branches—comprises many different cell types 
that vary by both function and topographic location. T and B 
lymphocytes constitute the major cellular components of the 
adaptive immune response (25). More than any other cellular 
system, cell-mediated immune responses are largely controlled 

by T cells. Environmental factors have frequently been associated 
with providing the trigger that enables or enhances the devel-
opment of T-cell immunity in sensitive individuals (26). Many 
additional aspects of T-cell function can be altered by the local 
cytokine or chemokine environment. Therefore, by exploring the 
pathogenesis of uncontrolled inflammation in ALI, we may be 
able to clarify the functioning of T-cell immunology.

Several Th subsets within the T-cell immune system are now 
well defined, including Th1, Th2, Tregs, follicular helper T cells, 
Th17, Th22, and Th25 (26–28). A central question in T-cell 
immunology is how this group of CD4 T  cells can coordinate 
such diverse immunologic processes involving so many different 
cell types. A central question in T-cell immunology is how this 
group of CD4 T cells can coordinate such diverse immunologic 
processes involving so many different cell types. Tregs are a 
subtype of CD4+ T  cells known to be significant for immune 
homeostasis and maintaining self-tolerance; they were termed 
suppressor cells originally (29). On the basis of the relative 
differentiation state and the tissues where Tregs are generated 
primarily, they can be separated into several subsets, including 
two major subgroups. One subgroup is a distinct lineage (tTregs) 
from thymus, the other originate from the peripheral conversion 
of naive CD4+CD25− (Tconvs) into Tregs (pTregs) induced by 
FoxP3 (30). The interaction of Naive or resting Tregs are lower 
than the threshold with full activation, but the changes of effec-
tor Tregs in surface markers and enhanced suppression. Memory 
Tregs reacted against antigen and had survivability for quite a 
time indeed in the absence of antigen apparently. In the suspicion, 
memory Tregs alleviate tissue damage during the deepen reac-
tions of pro-inflammatory memory cells (31, 32). In the research 
about ALI, it is an unknown area. However, from the aspects of 
lung development, pulmonary fibrosis, lung injury and repair, 
etc., which controlled by inflammation, the characteristics of 
Treg subtypes should play an important role in ALI and need to 
be confirmed.

Human Tregs were first characterized as CD4+CD25+ T cells 
in 2001 (33, 34); subsequent studies have confirmed transcrip-
tion factor FoxP3 as a specific regulatory marker of human Tregs 
(35), which are believed to be important for maintaining immune 
homeostasis. Numerous publications have reported that the 
reduced generation or deficient function of Tregs is associated 
with greater disease severity and activity, as noted in patients 
with various inflammatory diseases (36). Current studies have 
also shown that Tregs can limit effector T-cell function (37, 38), 
which is known to infection control or mediating inflamma-
tory injury (39). The most critical population of Tregs, which 
expresses Foxp3, can limit the activation, proliferation, and effec-
tor roles in series of immune cells (40–42). CD4+CD25+Foxp3+ 
Tregs are a representative cell type. And it is one of the powerful 
immunomodulators for adaptive immune system, functionally 
differentiated to be able to control Th1- or Th2-type immune 
responses by regulating the expression of Th1- or Th2-related 
transcription factors specifically as well as the activation of 
monocytes/macrophages (43, 44). However, although each sub-
set of Tregs was functionally suppressive, they displayed unique 
inflammatory response patterns about inflammatory factor (pro- 
or anti-) formation, expressed lineage-specifying transcription 
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factors differentially, after comprehensive functional analysis 
about various Tregs subsets (27). Studies showed that there 
is a difference between CD4+CD45RO+CD25hiCD127lo Tregs 
and CD4+CD45RO+CD25− Th cells in chemokine (C-C motif) 
receptor 6 (CCR6), CXCR3, CCR4, and CCR10 from peripheral 
blood. It could not find the CCR4−/CCR4−CCR10− phenotypic in 
the above type of Tregs. Due to their phenotypic similarity with 
different effector T cell subsets, we considered these populations 
as Th1-, Th2-, Th17-, and Th22-like Tregs. As described in Th 
cells, these acquisition of homing receptor phenotypes probably 
happens after the activation of periphery Tregs (27).

Although natural (n)Tregs are usually stable and long-lived, 
Tregs may demonstrate instability under pathogenic or inflam-
matory circumstances (45), and the stability and plasticity of 
Foxp3 has been under debate. Tregs instability is marked by 
the loss of Foxp3 expression and suppressive capacity as well 
as acquisition of features reminiscent of exFoxp3 cells (effector 
T cells by CD25loFoxp3+CD4+ T cells lose Foxp3 expression) in 
response to environmental cues (45, 46). Studies showed that 
exFoxp3 Th17  cells, characterized by the expression of Sox4, 
chemokine (C-C motif) ligand 20, CCR6, IL-23 receptor, and 
receptor activator of NF-κB ligand, were more potent osteo-
clastogenic T  cells than naïve CD4+ T  cell-derived Th17  cells 
in autoimmune arthritis (RA) (46). On other hand, the balance 
between IL-2 and IL-6 should regulate the development of Treg 
and Th17  cells from naive CD4+ T  cells (47), and the fate of 
plastic Foxp3+ T cells may be determined by the cytokine balance 
too (48). Moreover, Th17 cells were shown to transdifferentiate 
into another Tregs subset, IL-10+ T regulatory type 1 cells dur-
ing the resolving of inflammation (49). An additional source 
of Tregs includes Th17  cell transdifferentiation into ex-Th17 
IL-17AnegFoxp3+ cells (50). It can be seen that the instability of 
Tregs in an inflammatory state plays a vital function in the occur-
rence of diseases. In many autoimmune inflammatory conditions, 
Tregs plays an anti-inflammatory role, which when it fails, also 
leads to the development of inflammatory sickness. In several 
lung diseases, Tregs are in capacity of anti-inflammatory by the 
contact dependence inhibition or release of cytokines (IL-10, 
TGF-β1, and INF-γ) mainly (29, 51–53). The expression of the 
required receptors making Tregs susceptible to these modulating 
cytokines is initiated only after activation and possibly also some 
lineage commitment. In addition and more importantly, the 
number and functional status of Tregs that could produce dif-
ferent cytokines (IL-10 and IFN-γ) or small-molecule proteins 
(perforin and granzyme) were not the same in different tissues or 
microenvironments (51, 54, 55). In other words, Tregs can bring 
into play their functions through a variety of inhibitory mecha-
nisms; however, exactly how Tregs employ these mechanisms in  
ALI remains unclear.

Tregs iN ALi: MeTRONOMe OF 
“iNFLAMMATORY FACTOR STORM” 
ReGULATiON

An infaust outcome of ARDS is related to the initial excessive 
pulmonary inflammation, which continues over time (56). Many 

modulators of inflammation were found to be increased in 
patients with high risk of ARDS who later died. And cytokines 
play a significant role in the development of lung region 
immunity. For distinct effector cytokines, Tregs should act as a 
“cytokine sink.” And inflammation-specific Tregs work out an 
environment-specific inhibitory activity by the function. Studies 
have demonstrated a core role for Tregs in the alleviating or 
treating of ALI/ARDS in that they orchestrate a complex series 
of therapeutic events (20, 57). We now know that even in the 
pathophysiology of indirect ALI—which we used to described 
as a pro-inflammatory pathology mediated by cells of the innate 
immune system—cells of the adaptive immune response play a 
major role (58) (Figure 1).

TNF-α AND iL-10

The role of TNF-α as a major test indicator chosen for almost all 
clinical or basic research on the uncontrolled inflammation of 
ARDS is both important and obvious. Although there was a little 
difference in the increase of TNF-α in lipopolysaccharides (LPS) 
and oleic acid (OA)-induced ALI models, the overall increase 
was significant [except for the arterial or mixed venous blood 
samples of OA in pig models (59)]. Research has shown that cure 
with TNF-α-specific antibody restored Tregs function in rheu-
matoid arthritis, which was related to decreasing the expression 
of protein phosphatase 1 and increasing the phosphorylation of 
Foxp3 in Tregs (60). Current research on ARDS has confirmed 
that transplantation of human umbilical cord mesenchymal stem 
cells improves ALI by increasing the alveolar Tregs and balancing 
pro- and anti-inflammatory factors (including TNF-α) in ALI 
model (61).

IL-10 is an anti-inflammatory cytokine. Tregs can produce 
IL-10 to suppress hypernomic immune responses and thus to 
protect the host (62). This may have an important protective 
role in ALI, as by ameliorating the lung tissue injury by restrain-
ing production of TNF-α and neutrophil activity (63), IL-10 
is produced during lung injury and significantly contributes 
to rapid early immunopathogenesis. During indirect ALI, the 
regulatory mechanisms of lung activated are mediated by the 
specific subgroup of CD4+CD25+Foxp3+ Tregs that are central 
to the domination of neutrophil recruitment by increasing the 
production of IL-10 (58). In transfusion-related ALI, CD11c+ 
dendritic cells and Tregs were the key effectors in regulating 
IL-10 (64). Interestingly, analyses in mice have shown that 
IL-10 production by Tregs was not required to control systemic 
autoimmunity, but it was necessary for keeping immunologic 
responses at the environmental/lung interface (51). Obviously, 
the IL-10 expression is regulated by Tregs in the progress of 
ALI, and sometimes the effect of IL-10 may inhibit the TNF-α 
production.

TGF-β, iL-6, AND iL-2

The development of Tregs requires TGF-β, while IL-6 and IL-2 
are pivotal regulators obstructing the polarization of Tregs from 
naive T cells (65, 66). In the research using a mouse model of 
ALI, the presence of Tregs led to the increased local expression 
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of TGF-β (20). TGF-β participates in many of the pathophysi-
ologic processes of ARDS by stimulating the proliferation of 
fibroblasts, leading to the development of pulmonary fibrosis 
(67) and promoting the internalization of the αβγ epithelial 
sodium channel complex from the alveolar epithelial cell 
surface. This process leads to persistence of pulmonary edema 
(68, 69). As we know, lymphocytes can contribute to the 
resolution of inflammation through the clearance of alveolar 
neutrophils, which is the mechanism of pulmonary inflam-
mation in ALI and ARDS. Research has confirmed that the 
neutrophil clearance rate can accelerated by Tregs (4, 20). IL-6 
seems to be a reliable biomarker of severity of illness in critical 
patients with high risk for ARDS, and it was found increased 
in the bronchoalveolar lavage fluid (BALF) and plasma in 
several ALI models (70, 71). Early studies showed that IL-6 
strengthens the cytotoxic potential of polymorphonuclear 
leukocytes via selective enhancement of elastase release (72). 
TGF-β functions as an inflammatory pathway of uncontrolled 
inflammation via p38MAPK, SMAD3 (73), or IL-6 to promote 
neutrophil clearance (74). Thus, Tregs inhibit the uncontrolled 
inflammation of ARDS through the secretion of TGF-β, which 
affects IL-6 and then clears the neutrophils. But the debate 
continues regarding whether it acts as a counterregulatory 
mediator or pro-inflammatory principally. Follow-up studies 
have confirmed that IL-6 markedly diminishes lung injury in 
a hyperoxic model associated with the induction of Bcl-2 and 
TIMP-1 (75). According to the research of D’Alessio et al., Tregs 

orchestrated critical events to recovery via adoptive transfer 
after LPS-induced (intratracheal) ALI (20, 76). Interestingly, 
the absence of Tregs might contribute to the increased expres-
sion of the IL-6 gene persistently (76). Thus, the mechanism of 
Tregs reliance on IL-6 seems to differ in different types of ALI. 
On the other hand, low doses of IL-2 are the most successful 
strategy to “boost” Tregs in vivo so far (77). IL-2 is necessary for 
the development and maintenance of Foxp3+CD4+ Tregs, which 
prevent the development of autoimmune disease (78, 79). The 
levels of IL-2 and Treg-related cytokines in BALF and serum 
gradually decreased in ALI over time (80). Animal studies 
have shown that in chorioamnionitis, systemic treatment with 
IL-2 expanded Tregs preferentially by increasing the ratio of 
FoxP3+/CD3+ in fetal lungs, thus improving lung function and 
modulating pulmonary inflammation (81). However, there is 
little evidence of ARDS/ALI induced by other causes.

iL-8

IL-8, a potent neutrophil attractant and activator, was found 
to be increased in the BALF of patients at risk who ultimately 
developed ARDS (82). A multiple logistic regression model 
incorporating oxygenation index, IL-8, and TNF-R2 was 
superior in predicting the composite outcome of mortality or 
severe morbidity (83). IL-8 plays a significant role in ALI via 
the formation of anti-IL-8 autoantibody, and IL-8 complexes 
and of those complexes’ interactions with FcγRIIa receptors, 
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leading to the development of ALI by effecting neutrophil 
apoptosis (84, 85). Limited research has found that Tregs exert 
an inhibitive effect on innate immune responses and neutrophil 
infiltration mediated by IL-8 (86). There is also evidence that 
decreased IL-8 in the BALF and improvement of lung injuries 
are accompanied by increased CD4+Foxp3+ Tregs number and 
Foxp3 transcription level of the lungs (87). But this evidence is 
of limited significance for the regulation of Tregs in ALI.

iL-33 AND iL-18

The role of IL-33 is not limited to Th2 response. By contrast, 
IL-33 is a potent (83) activator of group 2 innate lymphoid 
cells, Th1  cells, Tregs, and CD8+ T  cells (88), and it is an 
immunostimulatory factor used to induce Treg expansion (89). 
It is released in the stage of tissue injury in sepsis and activates 
type 2 innate lymphoid cells that encourage the polarization of 
M2 macrophages. In this way, IL-10 enhances the amplification 
of Treg population (90). In ARDS, IL-33 level of serum were 
higher in patients with pulmonary factors; then pulmonary 
inflammation and injury were reduced by the treatment of 
IL-33 neutralizing antibody (19). In the lung, CD4+Foxp3+ 
Tregs expressed ST2, the IL-33 receptor. If exposed to IL-33, 
Tregs can upregulated the expression of GATA3 and ST2, then 
produced type 2 cytokines (91). In other studies, selective 
Tregs deficiency in amphiregulin cause the severe ALI and 

hypoxias during influenza virus infection; this mobilized Tregs 
in response to the IL-33 or IL-18 but not by T cell receptors 
signaling (7, 92). Early-stage serum IL-18 levels are among the 
signs reflecting the prognosis after 60 or more days in patients 
with ARDS (93). The pro-inflammatory role of IL-18 in ALI 
is related to the activation of NLRP3 through the activation 
of caspase-1 (94, 95) and the upregulation of IL-18-mediated 
neutrophil infiltration (96).

Th17, iL-17, AND iL-35

A balance between Th17 and Tregs may be essential for main-
taining immune homeostasis and has long been thought to be an 
important factors in the development/prevention of autoimmune 
and inflammatory diseases (97). The severity of lung injury was 
associated with imbalanced T-cell subsets, which were related 
to the combined effect of increased pro-inflammatory (Th1) 
cells and decreased anti-inflammatory cells (Foxp3+ Tregs) (98). 
Th17/Treg imbalance favoring a Th17 shift indicates a potential 
therapeutic target to reduce lung injury and a novel risk indicator 
for early ARDS patients (80, 99). Meanwhile, IL-17-producing 
cells (Th17) have a pro-inflammatory effects. Studies have shown 
that elevated level of IL-17A in alveolar and circulating related 
to the increased percentages of alveolar neutrophils, greater 
alveolar permeability, and reduced organ dysfunction in ARDS 
(97, 100). We must pay attention to cyclic AMP-responsive 
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element modulator-α (CREMα), overexpression of CREMα in 
T  cells should change the inflammatory microenvironment. 
Levels of CREMα in T  cells could determine the outcome of 
ALI, and upgraded CREMα contributes to increased IL-17 
expression and decreased Foxp3, IL-2, and numbers of Tregs 
(101). Non-ALI research shows that IL-17-producing biTregs 
coincide with the progress of immuno-inflammation and tis-
sue injury, and the specific elimination of RORγt activation in 
endogenous biTregs results in the improvement of pulmonary 
vasculitic injury (102). The evidence we were able to find about 
ALI is limited to pentoxifyllinum-induced increased cAMP 
in ARDS, which may restore the balance of Treg/Th17 via the 
transcriptional regulation of RORγt and Foxp3 partly through 
STAT3 signal (103).

IL-35 is a relatively newly identified cytokine obligatory for 
the regulatory and inhibit role of Tregs; it plays a vital function in 
prevention and cure in autoimmune diseases. One study shows 
that the degree of lung injury mitigation was accompanied by 
increased CD4+Foxp3+ Tregs number as well as the Foxp3 
transcription level of lung and IL-35 level from the BALF in rats 
(87). But there is no direct research of the role and mechanism 
about Tregs and IL-35 in ALI. However, a study of pulmonary 
inflammatory disease (allergic airways disease) confirmed that 
IL-35 production by inducible costimulator-positive Tregs can 
suppress IL-17 production and thereby reverse the inflammation 
(104). Thus, the effect of IL-35 may be exerted by altering the 
expression of IL-17.

OTHeR iMMUNOSUPPReSSive 
MOLeCULeS

Other immunosuppressive molecules also participate in the pro-
gress of ALI. In mice and patients with ALI, the alveolar recruit-
ment of Tregs specifically mediated by the leukotriene B4–BLT1 
pathway contributed to the resolution of lung inflammation 
(20, 105), particularly in the resolution of ALI fibroproliferation 
(21). And Tregs can modify the ALI-induced innate immune 
response directly, a process mediated in part by PD-1 (106). 
Furthermore, Ecto-5′-nucleotidase eNT (CD73)+ Tregs have 
been found to contribute to adenosine-mediated resolution of  
ALI (107).

CONCLUSiON AND FUTURe 
PeRSPeCTiveS

The diverse etiologies of ARDS limit the study of its mechanisms 
and therapies. Given the heterogeneity of ARDS, we may well be 
forced to focus on just one of its features, namely uncontrolled 
inflammation. Cytokines play a crucial role in creating an 
immunogenic microenvironment and therefore are key play-
ers in the promotion or inhibition ALI. Complex networks of 
cytokines and chemokines regulate the progression of ARDS. 
An activated immune system and immune cells (CD4, CD8, 
Th1, Th2, Th17, Tregs, and others) act as a significant role in this 
network. The role of Tregs is to prevent the development and 
extension of inflammatory diseases (36), and they can prevent 

the development of immune pathology and inflammation in 
the environmental/pulmonary interface involved in ALI. Based 
on the effect of uncontrolled inflammation in the promotion 
of ALI, it is possible that the disease’s microenvironment may 
offer useful cues regarding Tregs, but this remains unclear. Some 
research suggests that Tregs can improve the ALI process through 
the influence of TGF-β (68, 69, 73, 74), IL-6 (20, 76), IL-10 
(51, 58, 64), IL-17 (101), IL-18 (7, 92), and IL-33 (91) (Figure 2). 
What needs to be raised is that IL-17, generated by Th17 cells 
preferentially, has an abundant research about ARDS (108). The 
Th17/Treg balance toward Th17 cells might improve the aggre-
gation of inflammatory mediators, and forming an amplifica-
tory inflammatory loop to promote uncontrolled inflammation 
in patients with ARDS (99). In an IL-6-rich inflammatory 
microenvironment, Th17 enhanced while Tregs are suppressed 
(109). So the role of IL-6 in shifting Th17/Treg axis in ALI is 
worth noticing. And IL-6 as a target for the treatment about Tregs  
should be considered.

There has also been some indirect evidence that Tregs have 
an impact on TNF-α (60, 61), IL-2 (81, 101), and IL-8 (87). In 
addition, some immunosuppressive molecules [BLT1 (20, 101), 
PD-1 (106), and CD73 (107)] have also been shown to play an 
important role in Treg immune function in ALI. Hence, the 
manipulation of Tregs may represent a plausible target for treat-
ing ALI.

“Immune conditioning” may be a fashionable concept, but in 
essence it also points to the intervention of immune cells and 
their effects. Cell-based therapy for ARDS has the potential to be 
of therapeutic value (110–113). Various therapeutic approaches 
with some success in promoting Tregs have been investigated in 
diseases will provide some important clues to similar treatments 
for ARDS (114–117). Generally, Tregs have a protective effect 
and are beneficial to patients with ALI, but excessive suppression 
of inflammation is not an ideal outcome. Therefore, a dynamic 
assessment of the immune status in ALI is essential for the eluci-
dation of its Treg-based therapy.
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