23 research outputs found

    The accuracy of three-dimensional rapid prototyped surgical template guided anterior segmental osteotomy

    Get PDF
    Surgical guiding templates provided a reliable way to transfer the simulation to the actual operation. However, there was no template designed for anterior segmental osteotomy so far. The study aimed to introduce and evaluate a set of 3D rapid prototyping surgical templates used in anterior segmental osteotomy. From August 2015 to August 2017, 17 patients with bimaxillary protrusions were recruited and occlusal-based multi-sectional templates were applied in the surgeries. The cephalometric analysis and 3D superimposition were performed to evaluate the differences between the simulations and actual post-operative outcomes. The patients were followed-up for 12 months to evaluate the incidence rate of complications and relapse. Bimaxillary protrusion was corrected in all patients with no complication. In radiographic evaluations, there was no statistically significant difference between the actual operations and the computer-aided 3D simulations (p >0.05, the mean linear and angular differences were less than 1.32mm and 1.72° consequently, and 3D superimposition difference was less than 1.4mm). The Pearson intraclass correlation coefficient reliabilities were high (0.897), and the correlations were highly significant (P< 0.001). The 3D printed surgical template designed in this study can safely and accurately transfer the computer-aided 3D simulation into real practice

    Intermittent parathyroid hormone (PTH) promotes cementogenesis and alleviates the catabolic effects of mechanical strain in cementoblasts

    No full text
    Abstract Background External root resorption, commonly starting from cementum, is a severe side effect of orthodontic treatment. In this pathological process and repairing course followed, cementoblasts play a significant role. Previous studies implicated that parathyroid hormone (PTH) could act on committed osteoblast precursors to promote differentiation, and inhibit apoptosis. But little was known about the role of PTH in cementoblasts. The purpose of this study was to investigate the effects of intermittent PTH on cementoblasts and its influence after mechanical strain treatment. Results Higher levels of cementogenesis- and differentiation-related biomarkers (bone sialoprotein (BSP), osteocalcin (OCN), Collagen type I (COL1) and Osterix (Osx)) were shown in 1–3 cycles of intermittent PTH treated groups than the control group. Additionally, intermittent PTH increased alkaline phosphatase (ALP) activity and mineralized nodules formation, as measured by ALP staining, quantitative ALP assay, Alizarin red S staining and quantitative calcium assay. The morphology of OCCM-30 cells changed after mechanical strain exertion. Expression of BSP, ALP, OCN, osteopontin (OPN) and Osx was restrained after 18 h mechanical strain. Furthermore, intermittent PTH significantly increased the expression of cementogenesis- and differentiation-related biomarkers in mechanical strain treated OCCM-30 cells. Conclusions Taken together, these data suggested that intermittent PTH promoted cementum formation through activating cementogenesis- and differentiation-related biomarkers, and attenuated the catabolic effects of mechanical strain in immortalized cementoblasts OCCM-30

    Multifunctional peptide-assembled micelles for simultaneously reducing amyloid-β and reactive oxygen species.

    Get PDF
    The excessive production and deposition of amyloid-β (Aβ) is one of the most important etiologies of Alzheimer's disease (AD). The interaction between Aβ and metal ions produces aberrant reactive oxygen species (ROS), which induce oxidative stress and accelerate the progression of AD. To reduce Aβ plaques and ROS to maintain their homeostasis is an emerging and ingenious strategy for effective treatment of AD. Herein, we report the rational design of multifunctional micelles (MPGLT) based on a polymer-grafted peptide to simultaneously clear Aβ and ROS for AD therapy. The MPGLT integrating three functional peptides as a ROS scavenger (tk-GSH), β-sheet breaker (LP) and an autophagy activator (TK) respectively, could capture and degrade Aβ. Meanwhile, the tk-GSH on the surface of MPGLT effectively scavenges the intracellular ROS. Consequently, MPGLT reduced the cytotoxicity of Aβ and ROS. In vivo animal studies using an AD mouse model further showed that MPGLT could transport across the blood-brain barrier for decreasing the Aβ plaque and eliminating ROS in vivo. This peptide micelle-based synergistic strategy may provide novel insight for AD therapy

    Social Exclusion Modulates Priorities of Attention Allocation in Cognitive Control

    No full text
    Many studies have investigated how exclusion affects cognitive control and have reported inconsistent results. However, these studies usually treated cognitive control as a unitary concept, whereas it actually involved two main sub-processes: conflict detection and response implementation. Furthermore, existing studies have focused primarily on exclusion’s effects on conscious cognitive control, while recent studies have shown the existence of unconscious cognitive control. Therefore, the present study investigated whether and how exclusion affects the sub-processes underlying conscious and unconscious cognitive control differently. The Cyberball game was used to manipulate social exclusion and participants subsequently performed a masked Go/No-Go task during which event-related potentials were measured. For conscious cognitive control, excluded participants showed a larger N2 but smaller P3 effects than included participants, suggesting that excluded people invest more attention in conscious conflict detection, but less in conscious inhibition of impulsive responses. However, for unconscious cognitive control, excluded participants showed a smaller N2 but larger P3 effects than included participants, suggesting that excluded people invest less attention in unconscious conflict detection, but more in unconscious inhibition of impulsive responses. Together, these results suggest that exclusion causes people to rebalance attention allocation priorities for cognitive control according to a more flexible and adaptive strategy

    Effect of CNT Content on Microstructure and Properties of CNTs/Refined-AZ61 Magnesium Matrix Composites

    No full text
    Carbon nanotubes (CNTs) reinforced magnesium matrix composites have great application potential in the transportation industry, but the low absolute strength is the main obstacle to its application. In this paper, copper-coated CNTs and AZ61 powder were used as raw materials to prepare CNTs/refined-AZ61 composites with good interfacial bonding, uniformly dispersed CNTs and fine grains by the process of ball milling refinement of AZ61 powder, ball milling dispersion and hot-pressing sintering. When the volume fraction of CNTs is less than or equal to 1 vol.%, CNTs can be uniformly dispersed and the yield strength and compressive strength of composites increase with higher CNT content. When the volume fraction of CNTs is 1 vol.%, the compressive strength and yield strength of composites reach 439 MPa and 361 MPa, respectively, which are 14% and 9% higher than those of matrix composites with nearly the same value of fracture strain. When the volume fraction of CNTs is greater than 1 vol.%, with the increase in CNT content, CNT clustering becomes more and more serious, resulting in a decrease in the strength and fracture strain of composites

    Influence of Soft Phase and Carbon Nanotube Content on the Properties of Hierarchical AZ61 Matrix Composite with Isolated Soft Phase

    No full text
    Carbon nanotube-reinforced magnesium matrix (CNTs/Mg) composite has great application potential in the transportation industry, but the trade-off between strength and ductility inhibits its widespread application. In order to balance the strength and plasticity of the composite, in this work, on the basis of the AZ61 matrix composite homogeneously reinforced by Ni-coated CNTs (hard phase), 30 vol.% large-size AZ61 particles are introduced as an isolated soft phase to fabricate hierarchical CNTs/AZ61 composites. The compression tests show the fracture strain and compressive strength of this composite increases by 54% and 8%, respectively, compared with homogeneous CNTs/AZ61 composite. During deformation, the hard phase is mainly responsible for bearing the load and bringing high strength, due to the precipitation of the Mg17Al12 phase, uniformly dispersed CNT and strong interfacial bonding of the CNTs/Mg interface through nickel plating and interfacial chemical reaction. Furthermore, the toughening of the soft phase results in high ductility. With the increase in CNT content, the compressive strength of composites is nearly unchanged but the fracture strain gradually decreases due to the stress concentration of CNT and its agglomeration

    Additional file 2: Table S1. of Intermittent parathyroid hormone (PTH) promotes cementogenesis and alleviates the catabolic effects of mechanical strain in cementoblasts

    No full text
    Densitometry for the bands (western blot analysis) of 0, 1, 2 and 3 cycles of intermittent PTH and the corresponding control groups in Fig. 1a-b. Table S2. Densitometry for the bands (western blot analysis) of the control group, the strain group and the strain + PTH group in Fig. 1c-d. Table S3. Quantitative analysis of ALP activity. Data indicated the levels of the control group, 1, 2 and 3 cycles of intermittent PTH groups respectively in Fig. 3b. Table S4. Data of quantitative calcium assay of the control group and 3 cycles of intermittent PTH group in Fig. 3d. Table S5. Data indicating the mRNA levels of BSP, OCN, COL1 and Osx of 0, 1, 2 and 3 cycles of intermittent PTH and the corresponding groups in Fig. 4a-d. Table S6. Densitometry for the bands (western blot analysis) of the control group and 3 cycles of intermittent PTH in Fig. 4e-i. Table S7. Data indicating the mRNA levels of BSP, ALP, OCN, OPN, Runx2 and Osx of the control group and the strain group after 18 h of mechanical strain treatment in Fig. 6a-f. Table S8. Densitometry for the bands (western blot analysis) of the control group, the strain group and the strain + PTH group in Fig. 7a-g. Data were presented as mean ± SD. (DOCX 21 kb

    The Divergent Effects of Fear and Disgust on Inhibitory Control: An ERP Study

    No full text
    <div><p>Negative emotional stimuli have been shown to attract attention and impair executive control. However, two different types of unpleasant stimuli, fearful and disgusting, are often inappropriately treated as a single category in the literature on inhibitory control. Therefore, the present study aimed to investigate the divergent effects of fearful and disgusting distracters on inhibitory control (both conscious and unconscious inhibition). Specifically, participants were engaged in a masked Go/No-Go task superimposed on fearful, disgusting, or neutral emotional contexts, while event-related potentials were measured concurrently. The results showed that for both conscious and unconscious conditions, disgusting stimuli elicited a larger P2 than fearful ones, and the difference waves of P3 amplitude under disgusting contexts were smaller than that under fearful contexts. These results suggest that disgusting distracters consume more attentional resources and therefore impair subsequent inhibitory control to a greater extent. This study is the first to provide electrophysiological evidence that fear and disgust differently affect inhibitory control. These results expand our understanding of the relationship between emotions and inhibitory control.</p></div
    corecore