1,501 research outputs found

    Revisiting the Pion Leading-Twist Distribution Amplitude within the QCD Background Field Theory

    Full text link
    We study the pion leading-twist distribution amplitude (DA) within the framework of SVZ sum rules under the background field theory. To improve the accuracy of the sum rules, we expand both the quark propagator and the vertex (z\cdot \tensor{D})^n of the correlator up to dimension-six operators in the background field theory. The sum rules for the pion DA moments are obtained, in which all condensates up to dimension-six have been taken into consideration. Using the sum rules, we obtain \left|_{\rm 1\;GeV} = 0.338 \pm 0.032, \left|_{\rm 1\;GeV} = 0.211 \pm 0.030 and \left|_{\rm 1\;GeV} = 0.163 \pm 0.030. It is shown that the dimension-six condensates shall provide sizable contributions to the pion DA moments. We show that the first Gegenbauer moment of the pion leading-twist DA is a2π1  GeV=0.403±0.093a^\pi_2|_{\rm 1\;GeV} = 0.403 \pm 0.093, which is consistent with those obtained in the literature within errors but prefers a larger central value as indicated by lattice QCD predictions.Comment: 13 pages, 7 figure

    Piperidinium bis­(2-oxidobenzoato-κ2 O 1,O 2)borate

    Get PDF
    The asymmetric unit of the title compound, C5H12N+·C14H8BO6 − or [C5H12N][BO4(C7H4O)2], contains two piperidinium cations and two bis­(salicylato)borate anions. The coordination geometries around the B atoms are distorted tetra­hedral. In the two mol­ecules, the aromatic rings are oriented at dihedral angles of 76.27 (3) and 83.86 (3)°. The rings containing B atoms have twist-boat conformations, while the two cations adopt chair conformations. In the crystal, the component species are linked by N—H⋯O hydrogen bonds. In the crystal structure, intra- and inter­molecular N—H⋯O hydrogen bonds link the mol­ecules

    In vitro specific interactions revealed the infective characteristics of fungal endophytes to grapevine

    Get PDF
    In the present study a method for co-culture of fungal endophytic strains and grape cells was developed in order to study their interactions, and filter candidates for further safe inoculation in the vineyard. Analysis of morphological and physiological traits was performed by measuring the plant callus and fungal growth, plant cells viability, degree of cell oxidation and the scale of contact or its absence as reaction of the fungal endophyte to the presence of the plant callus. Accordingly, endophytic fungal strains (EFS) were classified on scale of invasion into categories (strong - medium - weak invasive), as well as the contact between the two partners (grow into - grow onto - contact - no contact) and the grape cell oxidation degree (normal (no oxidation) - light - moderate - serious). More included the dominance and distribution of EFS in the plant host, and correlation plots of physiological traits during plant callus and endophytic fungi co–culture were calculated

    Oxygen Vacancy Induced Ferromagnetism in V2_2O5x_{5-x}

    Full text link
    {\it Ab initio} calculations within density functional theory with generalized gradient approximation have been performed to study the effects of oxygen vacancies on the electronic structure and magnetism in undoped V2_2O5x_{5-x} (0<x<0.50 < x < 0.5). It is found that the introduction of oxygen vacancies would induce ferromagnetism in V2_2O5x_{5-x} with the magnetization being proportional to the O vacancy concentration xx. The calculated electronic structure reveals that the valence electrons released by the introduction of oxygen vacancies would occupy mainly the neighboring V dxyd_{xy}-dominant band which then becomes spin-polarized due to intra-atomic exchange interaction, thereby giving rise to the half-metallic ferromagnetism.Comment: To be published as a Letter in J. Phys. Soc. Japa

    Factors affecting reorientation of hydraulically induced fracture during fracturing with oriented perforations in shale gas reservoirs

    Get PDF
    Hydraulic fracturing with oriented perforations is an effective technology for reservoir stimulation for gas development in shale reservoirs. However, fracture reorientation during fracturing operation can affect the fracture conductivity and hinder the effective production of shale gas. In the present work, a numerical simulation model for investigating fracture reorientation during fracturing with oriented perforations was established, and it was verified to be suitable for all investigations in this paper. Based on this, factors (such as injection rate and fluid viscosity) affecting both of initiation and reorientation of the hydraulically induced fractures were investigated. The investigation results show that the fluid viscosity has little effect on initiation pressure of hydraulically induced fracture during fracturing operation, and the initiation pressure is mainly affected by perforation azimuth, injection rate and the stress difference. Moreover, the investigation results also show that perforation azimuth and difference between two horizontal principle stresses are the two most important factors affecting fracture reorientation. Based on the investigation results, the optimization of fracturing design can be achieved by adjusting some controllable factors. However, the regret is that the research object herein is a single fracture, and the interaction between fractures during fracturing operation needs to be further explored

    A Transmissive X-ray Polarimeter Design For Hard X-ray Focusing Telescopes

    Full text link
    The X-ray Timing and Polarization (XTP) is a mission concept for a future space borne X-ray observatory and is currently selected for early phase study. We present a new design of X-ray polarimeter based on the time projection gas chamber. The polarimeter, placed above the focal plane, has an additional rear window that allows hard X-rays to penetrate (a transmission of nearly 80% at 6 keV) through it and reach the detector on the focal plane. Such a design is to compensate the low detection efficiency of gas detectors, at a low cost of sensitivity, and can maximize the science return of multilayer hard X-ray telescopes without the risk of moving focal plane instruments. The sensitivity in terms of minimum detectable polarization, based on current instrument configuration, is expected to be 3% for a 1mCrab source given an observing time of 10^5 s. We present preliminary test results, including photoelectron tracks and modulation curves, using a test chamber and polarized X-ray sources in the lab
    corecore