3,242 research outputs found

    Indirect unitarity violation entangled with matter effects in reactor antineutrino oscillations

    Full text link
    If finite but tiny masses of the three active neutrinos are generated via the canonical seesaw mechanism with three heavy sterile neutrinos, the 3\times 3 Pontecorvo-Maki-Nakagawa-Sakata neutrino mixing matrix V will not be exactly unitary. This kind of indirect unitarity violation can be probed in a precision reactor antineutrino oscillation experiment, but it may be entangled with terrestrial matter effects as both of them are very small. We calculate the probability of \overline{\nu}_e \to \overline{\nu}_e oscillations in a good analytical approximation, and find that, besides the zero-distance effect, the effect of unitarity violation is always smaller than matter effects, and their entanglement does not appear until the next-to-leading-order oscillating terms are taken into account. Given a 20-kiloton JUNO-like liquid scintillator detector, we reaffirm that terrestrial matter effects should not be neglected but indirect unitarity violation makes no difference, and demonstrate that the experimental sensitivities to the neutrino mass ordering and a precision measurement of \theta_{12} and \Delta_{21} \equiv m^2_2 - m^2_1 are robust.Comment: 21 pages, 6 figures, version to be published in PLB, more discussions adde

    Coupled-channel analysis of the possible D()D()D^{(*)}D^{(*)}, Bˉ()Bˉ()\bar{B}^{(*)}\bar{B}^{(*)} and D()Bˉ()D^{(*)}\bar{B}^{(*)} molecular states

    Get PDF
    We perform a coupled-channel study of the possible deuteron-like molecules with two heavy flavor quarks, including the systems of D()D()D^{(*)}D^{(*)} with double charm, Bˉ()Bˉ()\bar{B}^{(*)}\bar{B}^{(*)} with double bottom and D()Bˉ()D^{(*)}\bar{B}^{(*)} with both charm and bottom, within the one-boson-exchange model. In our study, we take into account the S-D mixing which plays an important role in the formation of the loosely bound deuteron, and particularly, the coupled-channel effect in the flavor space. According to our calculation, the states D()D()[I(JP)=0(1+)]D^{(*)}D^{(*)}[I(J^P)=0(1^+)] and (D()D())s[JP=1+](D^{(*)}D^{(*)})_s[J^P=1^+] with double charm, the states Bˉ()Bˉ()[I(JP)=0(1+),0(2+),1(0+),1(1+),1(2+)]\bar{B}^{(*)}\bar{B}^{(*)}[I(J^P)=0(1^+),0(2^+),1(0^+),1(1^+),1(2^+)], (Bˉ()Bˉ())s[JP=0+,1+,2+](\bar{B}^{(*)}\bar{B}^{(*)})_s[J^P=0^+,1^+,2^+] and (Bˉ()Bˉ())ss[JP=0+,1+,2+](\bar{B}^{(*)}\bar{B}^{(*)})_{ss}[J^P=0^+,1^+,2^+] with double bottom, and the states D()Bˉ()[I(JP)=0(0+),0(1+)]D^{(*)}\bar{B}^{(*)}[I(J^P)=0(0^+),0(1^+)] and (D()Bˉ())s[JP=0+,1+](D^{(*)}\bar{B}^{(*)})_s[J^P=0^+,1^+] with both charm and bottom are good molecule candidates. However, the existence of the states D()D()[I(JP)=0(2+)]D^{(*)}D^{(*)}[I(J^P)=0(2^+)] with double charm and D()Bˉ()[I(JP)=1(1+)]D^{(*)}\bar{B}^{(*)}[I(J^P)=1(1^+)] with both charm and bottom is ruled out.Comment: 1 figure added, published in Physical Review

    Hadronic molecules with both open charm and bottom

    Get PDF
    With the one-boson-exchange model, we study the interaction between the S-wave D()/Ds()D^{(*)}/D^{(*)}_s meson and S-wave B()/Bs()B^{(*)}/B^{(*)}_s meson considering the S-D mixing effect. Our calculation indicates that there may exist the BcB_c-like molecular states. We estimate their masses and list the possible decay modes of these BcB_c-like molecular states, which may be useful to the future experimental search.Comment: 7 pages, 2 figures, 5 tables. Typos corrected. Version published in Phys. Rev.

    Probing Half-odd Topological Number with Cold Atoms in a Non-Abelian Optical Lattice

    Full text link
    We propose an experimental scheme to probe the contribution of a single Dirac cone to the Hall conductivity as half-odd topological number sequence. In our scheme, the quantum anomalous Hall effect as in graphene is simulated with cold atoms trapped in an optical lattice and subjected to a laser-induced non-Abelian gauge field. By tuning the laser intensity to change the gauge flux, the energies of the four Dirac points in the first Brillouin zone are shifted with each other and the contribution of the single Dirac cone to the total atomic Hall conductivity is manifested. We also show such manifestation can be experimentally probed with atomic density profile measurements.Comment: 5 pages, 3 figure

    The masses and axial currents of the doubly charmed baryons

    Full text link
    The chiral dynamics of the doubly heavy baryons is solely governed by the light quark. In this work, We have derived the chiral corrections to the mass of the doubly heavy baryons up to N3^3LO. The mass splitting of Ξcc\Xi_{cc} and Ωcc\Omega_{cc} at the N2^2LO depends on one unknown low energy constant c7c_7. With the experimental mass of Ξcc(3520)\Xi_{cc}(3520) as the input, we estimate the mass of Ωcc\Omega_{cc} to be around 3.678 GeV. Moreover, we have also performed a systematical analysis of the chiral corrections to the axial currents and axial charges of the doubly heavy baryons. The chiral structure and analytical expressions will be very useful to the chiral extrapolations of the future lattice QCD simulations of the doubly heavy baryons.Comment: 10 pages, 2 tables, 3 figure. Accepted by Phys. Rev.

    Simulating Z_2 topological insulators with cold atoms in a one-dimensional optical lattice

    Full text link
    We propose an experimental scheme to simulate and detect the properties of time-reversal invariant topological insulators, using cold atoms trapped in one-dimensional bichromatic optical lattices. This system is described by a one-dimensional Aubry-Andre model with an additional SU(2) gauge structure, which captures the essential properties of a two-dimensional Z2 topological insulator. We demonstrate that topologically protected edge states, with opposite spin orientations, can be pumped across the lattice by sweeping a laser phase adiabatically. This process constitutes an elegant way to transfer topologically protected quantum states in a highly controllable environment. We discuss how density measurements could provide clear signatures of the topological phases emanating from our one-dimensional system.Comment: 5 pages +, 3 figures, to appear in Physical Review
    corecore