2,232 research outputs found

    Electron dephasing in homogeneous and inhomogeneous indium tin oxide thin films

    Full text link
    The electron dephasing processes in two-dimensional homogeneous and inhomogeneous indium tin oxide thin films have been investigated in a wide temperature range 0.3--90 K. We found that the small-energy-transfer electron-electron (ee-ee) scattering process dominated the dephasing from a few K to several tens K. At higher temperatures, a crossover to the large-energy-transfer ee-ee scattering process was observed. Below about 1--2 K, the dephasing time τφ\tau_\varphi revealed a very weak temperature dependence, which intriguingly scaled approximately with the inverse of the electron diffusion constant DD, i.e., τφ(T0.3K)1/D\tau_\varphi (T \approx 0.3 \, {\rm K}) \propto 1/D. Theoretical implications of our results are discussed. The reason why the electron-phonon relaxation rate is negligibly weak in this low-carrier-concentration material is presented.Comment: 10 pages, 7 figure

    Automatic Generation of Headlines for Online Math Questions

    Full text link
    Mathematical equations are an important part of dissemination and communication of scientific information. Students, however, often feel challenged in reading and understanding math content and equations. With the development of the Web, students are posting their math questions online. Nevertheless, constructing a concise math headline that gives a good description of the posted detailed math question is nontrivial. In this study, we explore a novel summarization task denoted as geNerating A concise Math hEadline from a detailed math question (NAME). Compared to conventional summarization tasks, this task has two extra and essential constraints: 1) Detailed math questions consist of text and math equations which require a unified framework to jointly model textual and mathematical information; 2) Unlike text, math equations contain semantic and structural features, and both of them should be captured together. To address these issues, we propose MathSum, a novel summarization model which utilizes a pointer mechanism combined with a multi-head attention mechanism for mathematical representation augmentation. The pointer mechanism can either copy textual tokens or math tokens from source questions in order to generate math headlines. The multi-head attention mechanism is designed to enrich the representation of math equations by modeling and integrating both its semantic and structural features. For evaluation, we collect and make available two sets of real-world detailed math questions along with human-written math headlines, namely EXEQ-300k and OFEQ-10k. Experimental results demonstrate that our model (MathSum) significantly outperforms state-of-the-art models for both the EXEQ-300k and OFEQ-10k datasets

    3D bioprinting of liver-mimetic construct with alginate/cellulose nanocrystal hybrid bioink

    Get PDF
    The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.bprint.2017.12.001 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/3D bioprinting is a novel platform for engineering complex, three-dimensional (3D) tissues that mimic real ones. The development of hybrid bioinks is a viable strategy that integrates the desirable properties of the constituents. In this work, we present a hybrid bioink composed of alginate and cellulose nanocrystals (CNCs) and explore its suitability for extrusion-based bioprinting. This bioink possesses excellent shear-thinning property, can be easily extruded through the nozzle, and provides good initial shape fidelity. It has been demonstrated that the viscosities during extrusion were at least two orders of magnitude lower than those at small shear rates, enabling the bioinks to be extruded through the nozzle (100µm inner diameter) readily without clogging. This bioink was then used to print a liver-mimetic honeycomb 3D structure containing fibroblast and hepatoma cells. The structures were crosslinked with CaCl2 and incubated and cultured for 3 days. It was found that the bioprinting process resulted in minimal cell damage making the alginate/CNC hybrid bioink an attractive bioprinting material.Natural Sciences and Engineering Research Council (NSERC) of Canada (grant no. RGPIN-2016-04398

    Spatiotemporal Fluctuation Induced Transition in a Tumor Model with Immune Surveillance

    Full text link
    We report on a simple model of spatial extend anti-tumor system with a fluctuation in growth rate, which can undergo a nonequilibrium phase transition. Three states as excited, sub-excited and non-excited states of a tumor are defined to describe its growth. The multiplicative noise is found to be double-face: The positive effect on a non-excited tumor and the negative effect on an excited tumor.Comment: 8pages,5figure

    More on volume dependence of spectral weight function

    Full text link
    Spectral weight functions are easily obtained from two-point correlation functions and they might be used to distinguish single-particle from multi-particle states in a finite-volume lattice calculation, a problem crucial for many lattice QCD simulations. In previous studies, it is shown that the spectral weight function for a broad resonance shares the typical volume dependence of a two-particle scattering state i.e. proportional to 1/L31/L^3 in a large cubic box of size LL while the narrow resonance case requires further investigation. In this paper, a generalized formula is found for the spectral weight function which incorporates both narrow and broad resonance cases. Within L\"uscher's formalism, it is shown that the volume dependence of the spectral weight function exhibits a single-particle behavior for a extremely narrow resonance and a two-particle behavior for a broad resonance. The corresponding formulas for both A1+A^+_1 and T1T^-_1 channels are derived. The potential application of these formulas in the extraction of resonance parameters are also discussed

    Topological kink plasmons on magnetic-domain boundaries.

    Get PDF
    Two-dimensional topological materials bearing time reversal-breaking magnetic fields support protected one-way edge modes. Normally, these edge modes adhere to physical edges where material properties change abruptly. However, even in homogeneous materials, topology still permits a unique form of edge modes - kink modes - residing at the domain boundaries of magnetic fields within the materials. This scenario, despite being predicted in theory, has rarely been demonstrated experimentally. Here, we report our observation of topologically-protected high-frequency kink modes - kink magnetoplasmons (KMPs) - in a GaAs/AlGaAs two-dimensional electron gas (2DEG) system. These KMPs arise at a domain boundary projected from an externally-patterned magnetic field onto a uniform 2DEG. They propagate unidirectionally along the boundary, protected by a difference of gap Chern numbers ([Formula: see text]) in the two domains. They exhibit large tunability under an applied magnetic field or gate voltage, and clear signatures of nonreciprocity even under weak-coupling to evanescent photons

    Demonstration of Adiabatic Variational Quantum Computing with a Superconducting Quantum Coprocessor

    Full text link
    Adiabatic quantum computing enables the preparation of many-body ground states. This is key for applications in chemistry, materials science, and beyond. Realisation poses major experimental challenges: Direct analog implementation requires complex Hamiltonian engineering, while the digitised version needs deep quantum gate circuits. To bypass these obstacles, we suggest an adiabatic variational hybrid algorithm, which employs short quantum circuits and provides a systematic quantum adiabatic optimisation of the circuit parameters. The quantum adiabatic theorem promises not only the ground state but also that the excited eigenstates can be found. We report the first experimental demonstration that many-body eigenstates can be efficiently prepared by an adiabatic variational algorithm assisted with a multi-qubit superconducting coprocessor. We track the real-time evolution of the ground and exited states of transverse-field Ising spins with a fidelity up that can reach about 99%.Comment: 12 pages, 4 figure
    corecore