319 research outputs found

    Broken S_3 Flavor Symmetry of Leptons and Quarks: Mass Spectra and Flavor Mixing Patterns

    Full text link
    We apply the discrete S_3 flavor symmetry to both lepton and quark sectors of the standard model extended by introducing one Higgs triplet and realizing the type-II seesaw mechanism for finite neutrino masses. The resultant mass matrices of charged leptons (M_l), neutrinos (M_nu), up-type quarks (M_u) and down-type quarks (M_d) have a universal form consisting of two terms: one is proportional to the identity matrix I and the other is proportional to the democracy matrix D. We argue that the textures of M_l, M_u and M_d are dominated by the D term, while that of M_nu is dominated by the I term. This hypothesis implies a near mass degeneracy of three neutrinos and can naturally explain why the mass matrices of charged fermions are strongly hierarchical, why the quark mixing matrix is close to I and why the lepton mixing matrix contains two large angles. We discuss a rather simple perturbation ansatz to break the S_3 symmetry and obtain more realistic mass spectra of leptons and quarks as well as their flavor mixing patterns. We stress that the I term, which used to be ignored from M_l, M_u and M_d, is actually important because it can significantly modify the smallest lepton flavor mixing angle theta_13 or three quark flavor mixing angles.Comment: 13 pages, no figures; discussions about CP violation added, references updated, to appear in Phys. Lett.

    Micro Deep Drawing of C1100 Conical-cylindrical Cups

    Get PDF
    AbstractMicro deep drawing was prompted by the rapid development of micro electro mechanical systems, electron industries, new energy, and biomedical in recent years because of its mass production, high efficiency, high precision, low cost and no pollution. However, most researches concentrated on micro cylindrical cups, few studies were reported on other shaped parts. Micro deep drawing of micro conical-cylindrical cups was investigated in this study by using a micro blanking-deep drawing multiple operation mould. The specimen material was pure copper C1100 with a thickness of 50μm which was thermally treated in vacuum condition at 723K for 1h. Micro deep drawing experiments were carried out at room temperature on a universal testing machine at a drawing velocity of 0.05mm/s with the lubrication of polyethylene (PE) film. The results showed that micro conical-cylindrical cups with internal conical bottom diameter of only 0.4mm were well formed. The drawing force and limiting drawing ratio (LDR) micro conical-cylindrical cups were also discussed at the end of this paper

    Axin downregulates TCF-4 transcription via β-catenin, but not p53, and inhibits the proliferation and invasion of lung cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We previously reported that overexpression of Axin downregulates T cell factor-4 (TCF-4) transcription. However, the mechanism(s) by which Axin downregulates the transcription and expression of TCF-4 is not clear. It has been reported that β-catenin promotes and p53 inhibits TCF-4 transcription, respectively. The aim of this study was to investigate whether β-catenin and/or p53 is required for Axin-mediated downregulation of TCF-4.</p> <p>Results</p> <p>Axin mutants that lack p53/HIPK2 and/or β-catenin binding domains were expressed in lung cancer cells, BE1 (mutant p53) and A549 (wild type p53). Expression of Axin or AxinΔp53 downregulates β-catenin and TCF-4, and knock-down of β-catenin upregulates TCF-4 in BE1 cells. However, expression of AxinΔβ-ca into BE1 cells did not downregulate TCF-4 expression. These results indicate that Axin downregulates TCF-4 transcription via β-catenin. Although overexpression of wild-type p53 also downregulates TCF-4 in BE1 cells, cotransfection of p53 and AxinΔβ-ca did not downregulate TCF-4 further. These results suggest that Axin does not promote p53-mediated downregulation of TCF-4. Axin, AxinΔp53, and AxinΔβ-ca all downregulated β-catenin and TCF-4 in A549 cells. Knock-down of p53 upregulated β-catenin and TCF-4, but cotransfection of AxinΔβ-ca and p53 siRNA resulted in downregulation of β-catenin and TCF-4. These results indicate that p53 is not required for Axin-mediated downregulation of TCF-4. Knock-down or inhibition of GSK-3β prevented Axin-mediated downregulation of TCF-4. Furthermore, expression of Axin and AxinΔp53, prevented the proliferative and invasive ability of BE1 and A549, expression of AxinΔβ-ca could only prevented the proliferative and invasive ability effectively.</p> <p>Conclusions</p> <p>Axin downregulates TCF-4 transcription via β-catenin and independently of p53. Axin may also inhibits the proliferation and invasion of lung cancer cells via β-catenin and p53.</p

    Remote Monitoring for the Operation Status of CNC Machine Tools Based on HTML5

    Get PDF
    In order to improve the accuracy of remote monitoring of computer numerical control (CNC) machine tools and reduce the difficulty of monitoring; a remote monitoring method for CNC machine tools based on HTML5 is proposed in this paper. The core idea of this method is to record external sensor information and internal working condition information in the same time, and then visualize the information in multiple directions. Monitoring accuracy is improved through the combined use of internal and external information. In response to the difficult problem of traditional method monitoring; the internal working condition information, external sensor information, 3D model and multimedia information of CNC machine tools are jointly visualized. The 3D model synchronous motion is driven by real-time working condition data. Remote low-latency multimedia information transmission is implemented by using cloud live broadcast technology

    Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory

    Full text link
    Quantum repeaters are critical components for distributing entanglement over long distances in presence of unavoidable optical losses during transmission. Stimulated by Duan-Lukin-Cirac-Zoller protocol, many improved quantum-repeater protocols based on quantum memories have been proposed, which commonly focus on the entanglement-distribution rate. Among these protocols, the elimination of multi-photons (multi-photon-pairs) and the use of multimode quantum memory are demonstrated to have the ability to greatly improve the entanglement-distribution rate. Here, we demonstrate the storage of deterministic single photons emitted from a quantum dot in a polarization-maintaining solid-state quantum memory; in addition, multi-temporal-mode memory with 11, 2020 and 100100 narrow single-photon pulses is also demonstrated. Multi-photons are eliminated, and only one photon at most is contained in each pulse. Moreover, the solid-state properties of both sub-systems make this configuration more stable and easier to be scalable. Our work will be helpful in the construction of efficient quantum repeaters based on all-solid-state devicesComment: Published version, including supplementary materia

    Thorium-doping induced superconductivity up to 56 K in Gd1-xThxFeAsO

    Get PDF
    Following the discovery of superconductivity in an iron-based arsenide LaO1-xFxFeAs with a superconducting transition temperature (Tc) of 26 K[1], Tc was pushed up surprisingly to above 40 K by either applying pressure[2] or replacing La with Sm[3], Ce[4], Nd[5] and Pr[6]. The maximum Tc has climbed to 55 K, observed in SmO1-xFxFeAs[7, 8] and SmFeAsO1-x[9]. The value of Tc was found to increase with decreasing lattice parameters in LnFeAsO1-xFx (Ln stands for the lanthanide elements) at an apparently optimal doping level. However, the F- doping in GdFeAsO is particularly difficult[10,11] due to the lattice mismatch between the Gd2O2 layers and Fe2As2 layers. Here we report observation of superconductivity with Tc as high as 56 K by the Th4+ substitution for Gd3+ in GdFeAsO. The incorporation of relatively large Th4+ ions relaxes the lattice mismatch, hence induces the high temperature superconductivity.Comment: 4 pages, 3 figure

    Characterization of epitaxial GaAs MOS capacitors using atomic layer-deposited TiO2/Al2O3 gate stack: study of Ge auto-doping and p-type Zn doping

    Get PDF
    Electrical and physical properties of a metal-oxide-semiconductor [MOS] structure using atomic layer-deposited high-k dielectrics (TiO2/Al2O3) and epitaxial GaAs [epi-GaAs] grown on Ge(100) substrates have been investigated. The epi-GaAs, either undoped or Zn-doped, was grown using metal-organic chemical vapor deposition method at 620°C to 650°C. The diffusion of Ge atoms into epi-GaAs resulted in auto-doping, and therefore, an n-MOS behavior was observed for undoped and Zn-doped epi-GaAs with the doping concentration up to approximately 1017 cm-3. This is attributed to the diffusion of a significant amount of Ge atoms from the Ge substrate as confirmed by the simulation using SILVACO software and also from the secondary ion mass spectrometry analyses. The Zn-doped epi-GaAs with a doping concentration of approximately 1018 cm-3 converts the epi-GaAs layer into p-type since the Zn doping is relatively higher than the out-diffused Ge concentration. The capacitance-voltage characteristics show similar frequency dispersion and leakage current for n-type and p-type epi-GaAs layers with very low hysteresis voltage (approximately 10 mV)
    corecore