2,120 research outputs found

    Genome-wide association analysis identifies resistance loci for bacterial blight in a diverse collection of indica rice germplasm

    Full text link
    Bacterial blight, which is caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the most devastating rice diseases worldwide. The development and use of disease-resistant cultivars have been the most effective strategy to control bacterial blight. Identifying the genes mediating bacterial blight resistance is a prerequisite for breeding cultivars with broad-spectrum and durable resistance. We herein describe a genome-wide association study involving 172 diverse Oryza sativa ssp. indica accessions to identify loci influencing the resistance to representative strains of six Xoo races. Twelve resistance loci containing 121 significantly associated signals were identified using 317,894 single nucleotide polymorphisms, which explained 13.3–59.9% of the variability in lesion length caused by Xoo races P1, P6, and P9a. Two hotspot regions (L11 and L12) were located within or nearby two cloned R genes (xa25 and Xa26) and one fine-mapped R gene (Xa4). Our results confirmed the relatively high resolution of genome-wide association studies. Moreover, we detected novel significant associations on chromosomes 2, 3, and 6–10. Haplotype analyses of xa25, the Xa26 paralog (MRKc; LOC_Os11g47290), and a Xa4 candidate gene (LOC_11g46870) revealed differences in bacterial blight resistance among indica subgroups. These differences were responsible for the observed variations in lesion lengths resulting from infections by Xoo races P1 and P9a. Our findings may be relevant for future studies involving bacterial blight resistance gene cloning, and provide insights into the genetic basis for bacterial blight resistance in indica rice, which may be useful for knowledge-based crop improvement. (RΓ©sumΓ© d'auteur

    Multivariate analysis of elements in chinese brake fern as determined using neutron activation analysis

    Get PDF

    Understanding the e+eβˆ’β†’D(βˆ—)+D(βˆ—)βˆ’e^+e^-\to D^{(*)+}D^{(*)-} processes observed by Belle

    Full text link
    We calculate the production cross sections for Dβˆ—+Dβˆ—βˆ’D^{*+}D^{*-}, D+Dβˆ—βˆ’D^+D^{*-} and D+Dβˆ’D^+D^- in e+eβˆ’e^+e^- annihilation through one virtual photon in the framework of perturbative QCD with constituent quarks. The calculated cross sections for Dβˆ—+Dβˆ—βˆ’D^{*+}D^{*-} and D+Dβˆ—βˆ’D^+D^{*-} production are roughly in agreement with the recent Belle data. The helicity decomposition for Dβˆ—D^{*} meson production is also calculated. The fraction of the DLβˆ—Β±DTβˆ—βˆ“D^{*\pm}_LD^{*\mp}_T final state in e+eβˆ’β†’Dβˆ—+Dβˆ—βˆ’e^+e^-\to D^{*+}D^{*-} process is found to be 65%. The fraction of DDTβˆ—DD^*_T production is 100% and DDLβˆ—DD^*_L is forbidden in e+eβˆ’e^+e^- annihilation through one virtual photon. We further consider e+eβˆ’e^+e^- annihilation through two virtual photons, and then find the fraction of DDTβˆ—DD^{*}_T in e+eβˆ’β†’DDβˆ—e^+e^-\to DD^{*} process to be about 91%.Comment: 8 pages, 2 figure

    Evaluating Feynman integrals by the hypergeometry

    Full text link
    The hypergeometric function method naturally provides the analytic expressions of scalar integrals from concerned Feynman diagrams in some connected regions of independent kinematic variables, also presents the systems of homogeneous linear partial differential equations satisfied by the corresponding scalar integrals. Taking examples of the one-loop B0B_{_0} and massless C0C_{_0} functions, as well as the scalar integrals of two-loop vacuum and sunset diagrams, we verify our expressions coinciding with the well-known results of literatures. Based on the multiple hypergeometric functions of independent kinematic variables, the systems of homogeneous linear partial differential equations satisfied by the mentioned scalar integrals are established. Using the calculus of variations, one recognizes the system of linear partial differential equations as stationary conditions of a functional under some given restrictions, which is the cornerstone to perform the continuation of the scalar integrals to whole kinematic domains numerically with the finite element methods. In principle this method can be used to evaluate the scalar integrals of any Feynman diagrams.Comment: 39 pages, including 2 ps figure
    • …
    corecore