10 research outputs found

    Phylogeography of Francisella tularensis subspecies holarctica from the country of Georgia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Francisella tularensis</it>, the causative agent of tularemia, displays subspecies-specific differences in virulence, geographic distribution, and genetic diversity. <it>F. tularensis </it>subsp. <it>holarctica </it>is widely distributed throughout the Northern Hemisphere. In Europe, <it>F. tularensis </it>subsp. <it>holarctica </it>isolates have largely been assigned to two phylogenetic groups that have specific geographic distributions. Most isolates from Western Europe are assigned to the B.Br.FTNF002-00 group, whereas most isolates from Eastern Europe are assigned to numerous lineages within the B.Br.013 group. The eastern geographic extent of the B.Br.013 group is currently unknown due to a lack of phylogenetic knowledge about populations at the European/Asian juncture and in Asia. In this study, we address this knowledge gap by describing the phylogenetic structure of <it>F. tularensis </it>subsp. <it>holarctica </it>isolates from the country of Georgia, and by placing these isolates into a global phylogeographic context.</p> <p>Results</p> <p>We identified a new genetic lineage of <it>F. tularensis </it>subsp. <it>holarctica </it>from Georgia that belongs to the B.Br.013 group. This new lineage is genetically and geographically distinct from lineages previously described from the B.Br.013 group from Central-Eastern Europe. Importantly, this new lineage is basal within the B.Br.013 group, indicating the Georgian lineage diverged before the diversification of the other known B.Br.013 lineages. Although two isolates from the Georgian lineage were collected nearby in the Ukrainian region of Crimea, all other global isolates assigned to this lineage were collected in Georgia. This restricted geographic distribution, as well as the high levels of genetic diversity within the lineage, is consistent with a relatively older origin and localized differentiation.</p> <p>Conclusions</p> <p>We identified a new lineage of <it>F. tularensis </it>subsp. <it>holarctica </it>from Georgia that appears to have an older origin than any other diversified lineages previously described from the B.Br.013 group. This finding suggests that additional phylogenetic studies of <it>F. tularensis </it>subsp. <it>holarctica </it>populations in Eastern Europe and Asia have the potential to yield important new insights into the evolutionary history and phylogeography of this broadly dispersed <it>F. tularensis </it>subspecies.</p

    Identification of a Novel Yersinia enterocolitica Strain from Bats in Association with a Bat Die-Off That Occurred in Georgia (Caucasus)

    No full text
    Yersinia entercolitica is a bacterial species within the genus Yersinia, mostly known as a human enteric pathogen, but also recognized as a zoonotic agent widespread in domestic pigs. Findings of this bacterium in wild animals are very limited. The current report presents results of the identification of cultures of Y. entercolitica from dead bats after a massive bat die-off in a cave in western Georgia. The growth of bacterial colonies morphologically suspected as Yersinia was observed from three intestine tissues of 11 bats belonging to the Miniopterus schreibersii species. These three isolates were identified as Y. enterocolitica based on the API29 assay. No growth of Brucella or Francisella bacteria was observed from tissues of dead bats. Full genomes (a size between 4.6&ndash;4.7 Mbp) of the Yersinia strains isolated from bats were analyzed. The phylogenetic sequence analyses of the genomes demonstrated that all strains were nearly identical and formed a distinct cluster with the closest similarity to the environmental isolate O:36/1A. The bat isolates represent low-pathogenicity Biotype 1A strains lacking the genes for the Ail, Yst-a, Ysa, and virulence plasmid pYV, while containing the genes for Inv, YstB, and MyfA. Further characterization of the novel strains cultured from bats can provide a clue for the determination of the pathogenic properties of those strains

    Genetic Background and Antibiotic Resistance of Staphylococcus aureus Strains Isolated in the Republic of Georgia

    No full text
    The genetic composition and antibiotic sensitivities of 50 clinical isolates of Staphylococcus aureus obtained from various clinics in the Republic of Georgia were characterized. S. aureus strains ATCC 700699 and ATCC 29737 were included as reference standards in all analyses. All 52 strains had identical 16S rRNA profiles. In contrast, pulsed-field gel electrophoresis (PFGE) identified 20 distinct PFGE types among the 52 strains examined, which indicates that PFGE is more discriminating than is 16S rRNA sequence analysis for differentiating S. aureus strains. The results of our PFGE typing also suggest that multiple genetic subpopulations (related at the ca. 85% similarity level, based on their SmaI PFGE patterns) exist among the Georgian S. aureus strains. Twenty-two of the 50 Georgian strains were methicillin resistant and PCR positive for mecA, and 5 strains were methicillin sensitive even though they possessed mecA. None of the strains were vancomycin resistant or contained vanA. The nucleotide sequences of mecA fragments obtained from all mecA-containing strains were identical. Our data indicate that the population of S. aureus strains in Georgia is fairly homogeneous and that the prevalence of methicillin-resistant, mecA-positive strains is relatively high in that country

    The Fecal Microbial Community of Breast-fed Infants from Armenia and Georgia.

    No full text
    Multiple factors help shape the infant intestinal microbiota early in life. Environmental conditions such as the presence of bioactive molecules from breast milk dictate gut microbial growth and survival. Infants also receive distinct, personalized, bacterial exposures leading to differential colonization. Microbial exposures and gut environmental conditions differ between infants in different locations, as does the typical microbial community structure in an infant's gut. Here we evaluate potential influences on the infant gut microbiota through a longitudinal study on cohorts of breast-fed infants from the neighboring countries of Armenia and Georgia, an area of the world for which the infant microbiome has not been previously investigated. Marker gene sequencing of 16S ribosomal genes revealed that the gut microbial communities of infants from these countries were dominated by bifidobacteria, were different from each other, and were marginally influenced by their mother's secretor status. Species-level differences in the bifidobacterial communities of each country and birth method were also observed. These community differences suggest that environmental variation between individuals in different locations may influence the gut microbiota of infants

    Phylogeography of <i>Bacillus anthracis</i> in the Country of Georgia Shows Evidence of Population Structuring and Is Dissimilar to Other Regional Genotypes

    Get PDF
    <div><p>Sequence analyses and subtyping of <i>Bacillus anthracis</i> strains from Georgia reveal a single distinct lineage (Aust94) that is ecologically established. Phylogeographic analysis and comparisons to a global collection reveals a clade that is mostly restricted to Georgia. Within this clade, many groups are found around the country, however at least one subclade is only found in the eastern part. This pattern suggests that dispersal into and out of Georgia has been rare and despite historical dispersion within the country, for at least for one lineage, current spread is limited.</p></div

    Melt-MAMA primers targeting canonical SNPs for 8 new phylogenetic branches discovered in this study<sup>a</sup>.

    No full text
    a<p>Melt-MAMA, melt-mismatch amplification mutation assay; SNP, single nucleotide polymorphism; con, concentration.</p>b<p>Ames Ancestor reference genome (NC_006570).</p>c<p>SNP states are presented according to the top strand in the Ames ancestor AE017334 D: Derived SNP state; A: Ancestral SNP state.</p>d<p>Melt-mismatch amplification mutation assay (MAMA), A: Ancestral; D: Derived; C: Common. Primer tails and antepenultimate or penultimate mismatch bases are in lower case.</p>e<p>Final concentratinon of each primer in Melt-MAMA genotyping assays.</p

    <i>Bacillus anthracis</i> phylogenetics in Georgia.

    No full text
    <p>A) Established phylogeny of <i>B. anthracis </i><a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0102651#pone.0102651-Pearson1" target="_blank">[2]</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0102651#pone.0102651-Price1" target="_blank">[6]</a>–<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0102651#pone.0102651-VanErt1" target="_blank">[8]</a>. Terminal subgroups representing sequenced strains are shown as stars, and intervening nodes representing collapsed branches appear as circles. The highlighted yellow box (part of the Aust94 lineage) indicate the phylogenetic location of Georgian strains. Stars within the highlighted yellow area represent the three Georgian strains sequenced for this study. The number of Georgian strains is indicated in red. B) Expansion of the Aust94 group and canSNP subgroups within the Georgian lineage. The number and origin of isolates are shown for each node and stars or red arrows indicate the locations of the sequenced strains. Shapes of nodes correspond to geographic location. (C) Phylogeography of 272 <i>B. anthracis</i> isolates falling in the Aust94 group are mapped across the country of Georgia at a district level. The heat map legend indicates the number of isolates per subgroup found in a given district.</p
    corecore