5 research outputs found

    Knowledge-Aided Structured Covariance Matrix Estimator Applied for Radar Sensor Signal Detection

    No full text
    This study deals with the problem of covariance matrix estimation for radar sensor signal detection applications with insufficient secondary data in non-Gaussian clutter. According to the Euclidean mean, the authors combined an available prior covariance matrix with the persymmetric structure covariance estimator, symmetric structure covariance estimator, and Toeplitz structure covariance estimator, respectively, to derive three knowledge-aided structured covariance estimators. At the analysis stage, the authors assess the performance of the proposed estimators in estimation accuracy and detection probability. The analysis is conducted both on the simulated data and real sea clutter data collected by the IPIX radar sensor system. The results show that the knowledge-aided Toeplitz structure covariance estimator (KA-T) has the best performance both in estimation and detection, and the knowledge-aided persymmetric structure covariance estimator (KA-P) has similar performance with the knowledge-aided symmetric structure covariance estimator (KA-S). Moreover, compared with existing knowledge-aided estimator, the proposed estimators can obtain better performance when secondary data are insufficient

    Clutter Covariance Matrix Estimation for Radar Adaptive Detection Based on a Complex-Valued Convolutional Neural Network

    No full text
    In this paper, we address the problem of covariance matrix estimation for radar adaptive detection under non-Gaussian clutter. Traditional model-based estimators may suffer from performance loss due to the mismatch between real data and assumed models. Therefore, we resort to a data-driven deep-learning method and propose a covariance matrix estimation method based on a complex-valued convolutional neural network (CV-CNN). Moreover, a real-valued (RV) network with the same framework as the proposed CV network is also constructed to serve as a natural competitor. The obtained clutter covariance matrix estimation based on the network is applied to the adaptive normalized matched filter (ANMF) detector for performance assessment. The detection results via both simulated and real sea clutter illustrate that the estimator based on CV-CNN outperforms other traditional model-based estimators as well as its RV competitor in terms of probability of detection (PD)

    Interference Environment Model Recognition for Robust Adaptive Detection

    No full text
    corecore