38 research outputs found

    Iterative methods to solve the constrained Sylvester equation

    Get PDF
    In this paper, the multiple constraint least squares solution of the Sylvester equation AX+XB=C AX+XB = C is discussed. The necessary and sufficient conditions for the existence of solutions to the considered matrix equation are given. Noting that the alternating direction method of multipliers (ADMM) is a one-step iterative method, a multi-step alternating direction method of multipliers (MSADMM) to solve the considered matrix equation is proposed and some convergence results of the proposed algorithm are proved. Problems that should be studied in the near future are listed. Numerical comparisons between MSADMM, ADMM and ADMM with Anderson acceleration (ACADMM) are included

    Shear Resistance Capacity of Interface of Plate-Studs Connection between CFST Column and RC Beam

    Get PDF
    The combination of a concrete-filled steel tube (CFST) column and reinforced concrete (RC) beam produces a composite structural system that affords good structural performance, functionality, and workability. The effective transmission of moments and shear forces from the beam to the column is key to the full exploitation of the structural performance. The studs of the composite beam transfer the interfacial shear force between the steel beam and the concrete slab, with the web bearing most of the vertical shear force of the steel beam. In this study, the studs and vertical steel plate were welded to facilitate the transfer of the interfacial shear force between the RC beam and CFST column. Six groups of a total of 18 specimens were used to investigate the shear transfer mechanism and failure mode of the plate-studs connection, which was confirmed to effectively transmit the shear forces between the beam and column. The results of theoretical calculations were also observed to be in good agreement with the experimental measurements

    Effect of Soil-Structure Interaction on Seismic Performance of Long-Span Bridge Tested by Dynamic Substructuring Method

    No full text
    Because of the limitations of testing facilities and techniques, the seismic performance of soil-structure interaction (SSI) system can only be tested in a quite small scale model in laboratory. Especially for long-span bridge, a smaller tested model is required when SSI phenomenon is considered in the physical test. The scale effect resulting from the small scale model is always coupled with the dynamic performance, so that the seismic performance of bridge considering SSI effect cannot be uncovered accurately by the traditional testing method. This paper presented the implementation of real-time dynamic substructuring (RTDS), involving the combined use of shake table array and computational engines for the seismic simulation of SSI. In RTDS system, the bridge with soil-foundation system is divided into physical and numerical substructures, in which the bridge is seen as physical substructures and the remaining part is seen as numerical substructures. The interface response between the physical and numerical substructures is imposed by shake table and resulting reaction force is fed back to the computational engine. The unique aspect of the method is to simulate the SSI systems subjected to multisupport excitation in terms of a larger physical model. The substructuring strategy and the control performance associated with the real-time substructuring testing for SSI were performed. And the influence of SSI on a long-span bridge was tested by this novel testing method

    Silicon cross-coupled gated tunneling diodes

    No full text
    Tunneling-based static random-access memory (SRAM) devices have been developed to fulfill the demands of high density and low power, and the performance of SRAMs has also been greatly promoted. However, for a long time, there has not been a silicon based tunneling device with both high peak valley current ratio (PVCR) and practicality, which remains a gap to be filled. Based on the existing work, the current manuscript proposed the concept of a new silicon-based tunneling device, i.e., the silicon cross-coupled gated tunneling diode (Si XTD), which is quite simple in structure and almost completely compatible with mainstream technology. With technology computer aided design (TCAD) simulations, it has been validated that this type of device not only exhibits significant negative-differential-resistance (NDR) behavior with PVCRs up to 106, but also possesses reasonable process margins. Moreover, SPICE simulation showed the great potential of such devices to achieve ultralow-power tunneling-based SRAMs with standby power down to 10−12 W

    Bearing Capacities of Different-Diameter Concrete-Filled Steel Tubes under Axial Compression

    No full text
    The bearing capacities of concrete-filled steel tubes are normally derived through experiments with small-scale specimens, but it is uncertain whether such derivations are appropriate for the much larger components used in practical engineering. This study therefore investigates the effect of different diameters (219, 426, 630, and 820 mm) on the axial compression of short concrete columns in steel (Q235) tubes. It is found that the peak nominal stress decreases with increasing specimen size and that the axial bearing capacity is determined by three separate components: the cylinder compressive strength of the concrete, the improvement in strength due to the confining effect of the steel tube, and the longitudinal strength of the steel tube. At peak load, increases in the specimen diameter reduce the hoop stresses in the steel tube, thereby reducing the strengthening effect of confinement. Vertical stress in the steel tube is increased with diameter; therefore, the axial bearing capacity of the steel tube is directly related to the specimen size. Size effect coefficients for these three aspects of bearing capacity are defined and used to develop a size-dependent model for predicting the axial bearing capacity of large, concrete-filled steel tubes. The model is then validated against experimental data

    Size Effect on the Seismic Performance of High-Strength Reinforced Concrete Columns with Different Shear Span-to-Depth Ratios

    No full text
    The size effect on the seismic performance of conventional reinforced concrete columns has been observed in terms of flexural failure and shear failure. Under earthquake loading, slender columns experience flexural failure, and short columns experience flexure-shear failure and shear failure. However, the effect of section size on the seismic performance of high-strength reinforced concrete columns under the conditions of different shear span-to-depth ratios requires further confirmation. For this purpose, six high-strength reinforced concrete columns with shear span-to-depth ratios of 2 and 4 were subjected to cyclic loading in this study. The experimental results indicated that relative nominal flexural strength, energy dissipation coefficient, factor of safety, and local factor of safety all exhibited a strong size effect by decreasing with increasing column size. Furthermore, the size effect became stronger as the shear span-to-depth ratio was increased, except for average energy dissipation coefficient. The observed changes in the factor of safety were in good agreement with the Type 2 size effect model proposed by Bažant. Thus, based on the local factor of safety and Bažant’s Type 2 model, the code equation for moment capacity of different shear span-to-depth ratios was modified to provide a consistent factor of safety regardless of column size
    corecore