31 research outputs found

    Nobel-Prize-winning papers are significantly more highly-cited but not more disruptive than non-prize-winning counterparts

    Get PDF
    Using citation data of 557 Nobel prize winning papers and the same number of their non-prize winning counterparts in the same journal issues, we examined if the prize-winning papers have higher academic disruption than their counterparts. The results show that overall, the former group is significantly more highly-cited but not more disruptive than the latter. Moreover, the results are not consistent with existing knowledge that the numbers of authors and references negatively correlate with the disruption of papers

    Detection of cerebral tauopathy in P301L mice using high-resolution large-field multifocal illumination fluorescence microscopy

    Full text link
    Current intravital microscopy techniques visualize tauopathy with high-resolution, but have a small field-of-view and depth-of-focus. Herein, we report a transcranial detection of tauopathy over the entire cortex of P301L tauopathy mice using large-field multifocal illumination (LMI) fluorescence microscopy technique and luminescent conjugated oligothiophenes. In vitro assays revealed that fluorescent ligand h-FTAA is optimal for in vivo tau imaging, which was confirmed by observing elevated probe retention in the cortex of P301L mice compared to non-transgenic littermates. Immunohistochemical staining further verified the specificity of h-FTAA to detect tauopathy in P301L mice. The new imaging platform can be leveraged in pre-clinical mechanistic studies of tau spreading and clearance as well as longitudinal monitoring of tau targeting therapeutics

    Analysis on the Settlement of Adjacent Buildings Caused by the Underpassing Construction of the Biased Tunnel

    Get PDF
    Through the simulation analysis of the settlement and deformation law of the surface buildings caused by the construction of the biased tunnel, the following points are obtained: (1) The Peak formula is revised, and the influence range of the biased tunnel is predicted based on the formula. (2) It is concluded that when the tunnel is biased, the position of maximum deformation caused by ground settlement is generally in a parallel area 0.5 times the buried depth from the center line of the tunnel. (3) Through the double-layer verification of simulation analysis and monitoring measurement data, prior to the construction of buildings with similar weak foundations, their foundations should be reinforced in advance. (4) In the process of this simulation, the complicated influence of water pressure on tunnel excavation was not considered, which can be further optimized in the later stage

    Visualizing alpha-synuclein and iron deposition in M83 mouse model of Parkinson's disease in vivo

    Full text link
    BACKGROUND Abnormal alpha-synuclein and iron accumulation in the brain play an important role in Parkinson's disease (PD). Herein, we aim at visualizing alpha-synuclein inclusions and iron deposition in the brains of M83 (A53T) mouse models of PD in vivo . METHODS Fluorescently labelled pyrimidoindole-derivative THK-565 was characterized by using recombinant fibrils and brains from 10-11 months old M83 mice, which subsequently underwent in vivo concurrent wide-field fluorescence and volumetric multispectral optoacoustic tomography (vMSOT) imaging. The in vivo results were verified against structural and susceptibility weighted imaging (SWI) magnetic resonance imaging (MRI) at 9.4 Tesla and scanning transmission X-ray microscopy (STXM) of perfused brains. Brain slice immunofluorescence and Prussian blue staining were further performed to validate the detection of alpha-synuclein inclusions and iron deposition in the brain, respectively. RESULTS THK-565 showed increased fluorescence upon binding to recombinant alpha-synuclein fibrils and alpha-synuclein inclusions in post-mortem brain slices from patients with Parkinson's disease and M83 mice. i.v. administration of THK-565 in M83 mice showed higher cerebral retention at 20 and 40 minutes post-injection by wide-field fluorescence compared to non-transgenic littermate mice, in congruence with the vMSOT findings. SWI/phase images and Prussian blue indicated the accumulation of iron deposits in the brains of M83 mice, presumably in the Fe 3+^{3+} form, as evinced by the STXM results. CONCLUSION We demonstrated in vivo mapping of alpha-synuclein by means of non-invasive epifluorescence and vMSOT imaging assisted with a targeted THK-565 label and SWI/STXM identification of iron deposits in M83 mouse brains ex vivo

    Solutions of the Two-Dimensional Hubbard Model: Benchmarks and Results from a Wide Range of Numerical Algorithms

    Get PDF
    Numerical results for ground-state and excited-state properties (energies, double occupancies, and Matsubara-axis self-energies) of the single-orbital Hubbard model on a two-dimensional square lattice are presented, in order to provide an assessment of our ability to compute accurate results in the thermodynamic limit. Many methods are employed, including auxiliary-field quantum Monte Carlo, bare and bold-line diagrammatic Monte Carlo, method of dual fermions, density matrix embedding theory, density matrix renormalization group, dynamical cluster approximation, diffusion Monte Carlo within a fixed-node approximation, unrestricted coupled cluster theory, and multireference projected Hartree-Fock methods. Comparison of results obtained by different methods allows for the identification of uncertainties and systematic errors. The importance of extrapolation to converged thermodynamic-limit values is emphasized. Cases where agreement between different methods is obtained establish benchmark results that may be useful in the validation of new approaches and the improvement of existing methods

    Experimental Study of Cement Alkali-Resistant Glass Fiber (C-ARGF) Grouting Material

    No full text
    Mixing alkali-resistant glass fiber (ARGF) into grouting slurry can prevent the development of cracks; thus, understanding the properties of ARGF grouting material is important for applications in engineering. Two types of ARGFs (Cem-FIL®60 and Anti-Crak®HD) were selected as mixing materials, and their performance was tested in four areas, namely, compressive strength, tensile strength, flexural strength, and impervious performance, under four different mixing amounts of fiber (0%, 0.25%, 0.5%, and 1.0%). Results demonstrate that the addition of ARGF increased the compressive strength and tensile strength of the grouting slurry, and the best performance was at 0.5%. The effect on the flexural strength and impervious performance was related to the mixing amount, and the fiber may have induced a counter-effect for certain amounts of added ARGF. Mixing ARGF could increase the early strength ratio of grout; however, a high early strength ratio did not necessarily result in high strength, as the flexural strength did not change synchronously with the early strength ratio; a similar pattern was found for the impermeability. Cem-FIL®60 had a better effect on the properties of grouting materials than Anti-Crak®HD. These results were successfully applied in the water-plugging and reinforcement engineering of a karst tunnel

    A Two-Phase Algorithm for Robust Symmetric Non-Negative Matrix Factorization

    No full text
    As a special class of non-negative matrix factorization, symmetric non-negative matrix factorization (SymNMF) has been widely used in the machine learning field to mine the hidden non-linear structure of data. Due to the non-negative constraint and non-convexity of SymNMF, the efficiency of existing methods is generally unsatisfactory. To tackle this issue, we propose a two-phase algorithm to solve the SymNMF problem efficiently. In the first phase, we drop the non-negative constraint of SymNMF and propose a new model with penalty terms, in order to control the negative component of the factor. Unlike previous methods, the factor sequence in this phase is not required to be non-negative, allowing fast unconstrained optimization algorithms, such as the conjugate gradient method, to be used. In the second phase, we revisit the SymNMF problem, taking the non-negative part of the solution in the first phase as the initial point. To achieve faster convergence, we propose an interpolation projected gradient (IPG) method for SymNMF, which is much more efficient than the classical projected gradient method. Our two-phase algorithm is easy to implement, with convergence guaranteed for both phases. Numerical experiments show that our algorithm performs better than others on synthetic data and unsupervised clustering tasks

    Research on Dynamic Strength and Inertia Effect of Concrete Materials Based on Large-Diameter Split Hopkinson Pressure Bar Test

    No full text
    The Split Hopkinson Pressure Bar (SHPB) test device is an important tool to study the dynamic characteristics of concrete materials. Inertial effect is one of the main factors that cause inaccurate results in SHPB tests of concrete materials. To solve this problem, Large-diameter SHPB tests on concrete and mortar were performed. A dynamic increase factor (DIF) model considering strain rate effect and inertia effect was established. This model provides a scientific reference for studying the dynamic mechanical properties of concrete materials. The experimental results indicate that the strain rate effect of concrete is more sensitive than that of mortar, but the inertia effect of mortar is more sensitive than that of concrete. Under the same strain rate, the energy utilization rate, average fragment size, and impact potentiality of mortar are higher than concrete

    Analysis on the Settlement of Adjacent Buildings Caused by the Underpassing Construction of the Biased Tunnel

    No full text
    Through the simulation analysis of the settlement and deformation law of the surface buildings caused by the construction of the biased tunnel, the following points are obtained: (1) The Peak formula is revised, and the influence range of the biased tunnel is predicted based on the formula. (2) It is concluded that when the tunnel is biased, the position of maximum deformation caused by ground settlement is generally in a parallel area 0.5 times the buried depth from the center line of the tunnel. (3) Through the double-layer verification of simulation analysis and monitoring measurement data, prior to the construction of buildings with similar weak foundations, their foundations should be reinforced in advance. (4) In the process of this simulation, the complicated influence of water pressure on tunnel excavation was not considered, which can be further optimized in the later stage

    Experimental Study on the Performance of Graded Glass Fiber Reinforced Concrete (G-GRC) Based on Engineering Application

    No full text
    An important way to improve concrete performance is the use of alkali-resistant glass fibers (ARGFs) as reinforcement. This paper is based on the problems of the cracking of the partition wall and lining seepage in Laoshan Tunnel, Qingdao, China. Two types of ARGFs were selected as reinforcement materials for the partition wall and lining concrete: high dispersion (HD) and high performance (HP); and the compressive strength (CS), tensile strength (TS), flexural strength (FS), and impervious performance (IP) of concrete with different gradations of the two types of fibers were investigated. The results show that although the CS of graded glass fiber reinforced concrete (G-GRC) is slightly decreased, the TS, FS, and IP of G-GRC are significantly improved. When the densities of the ARGFs of HD and HP are 0.6 and 5 kg/m3, respectively, G-GRC performs best; additionally, compared with ordinary concrete, the TS, FS, and IP of G-GRC are increased by 15.86%, 14.90%, and 31.58%, respectively. Meanwhile, the tension–compression ratio is increased by 22.29%, and the mechanical properties of concrete are remarkably enhanced. The research results were successfully applied to the construction of the Laoshan tunnel, and good engineering results were obtained
    corecore