138 research outputs found

    Impact of Channel Aging on Massive MIMO Vehicular Networks in Non-isotropic Scattering Scenarios

    Get PDF
    Massive multiple-input multiple-output (MIMO) relies on accurate channel estimation for precoding and receiving to achieve its claimed performance advantages. When serving vehicular users, the rapid channel aging effect greatly hinders its advantages, and a careful system design is required to ensure an efficient use of wireless resources. In this paper, we investigate this problem for the first time in a non-isotropic scattering scenario. The von Mises distribution is adopted for the angle of arrival (AoA), resulting in a tunable channel temporal correlation coefficient (TCC) model, which can adapt to different AoA spread conditions through the k parameter and incorporates the isotropic Jakes-Clarke model as a special case. The simulated results in a Manhattan grid-type multi-cell network clearly demonstrate the impact of channel aging on the uplink spectral efficiency (SE) performance and moreover, in order to maximize the area average SE, the size of the transmission block should be optimally selected according to some linear equations of k

    A polar codes-based distributed UEP scheme for the internet of things

    Get PDF
    The Internet of Things (IoT), which is expected to support a massive number of devices, is a promising communication scenario. Usually, the data of different devices has different reliability requirements. Channel codes with the unequal error protection (UEP) property are rather appealing for such applications. Due to the power-constrained characteristic of the IoT services, most of the data has short packets; therefore, channel codes are of short lengths. Consequently, how to transmit such nonuniform data from multisources efficiently and reliably becomes an issue be solved urgently. To address this issue, in this paper, a distributed coding scheme based on polar codes which can provide UEP property is proposed. The distributed polar codes are realized by the groundbreaking combination method of noisy coded bits. With the proposed coding scheme, the various data from multisources can be recovered with a single common decoder. Various reliability can be achieved; thus, UEP is provided. Finally, the simulation results show that the proposed coding scheme is viable

    Detection of Flare-induced Plasma Flows in the Corona of EV Lac with X-ray Spectroscopy

    Full text link
    Stellar flares are characterized by sudden enhancement of electromagnetic radiation from the atmospheres of stars. Compared to their solar counterparts, our knowledge on the coronal plasma dynamics of stellar flares and their connection to coronal mass ejections (CMEs) remains very limited. With time-resolved high-resolution spectroscopic observations from the \textit{Chandra} X-ray observatory, we detected noticeable coronal plasma flows during several stellar flares on a nearby dMe star EV Lac. In the observed spectra of O~{\sc{viii}} (3 MK), Fe~{\sc{xvii}} (6 MK), Mg~{\sc{xii}} (10 MK), and Si~{\sc{xiv}} (16 MK) lines, these flare-induced upflows/downflows appear as significant Doppler shifts of several tens to \speed{130}, and the upflow velocity generally increases with temperature. Variable line ratios of the Si~{\sc{xiii}} triplet reveal that these plasma flows in most flares are accompanied by an increase of the coronal plasma density and temperature. We interpret these results as X-ray evidences for chromospheric evaporation on EV Lac. In two successive flares, the plasma flow pattern and a sharp increase of the measured coronal density are highly suggestive of explosive evaporation. The transition from redshifts to blueshifts in such an explosive evaporation occurs at a temperature of at least 10 MK, much higher than that observed in solar flares (\sim1 MK). However, in one flare the cool and warm upflows appear to be accompanied by a decreasing plasma density, which might be explained by a stellar filament/prominence eruption coupled to this flare. These results provide important clues to understand the coronal plasma dynamics during flares on M dwarfs.Comment: accepted by Ap

    Nanodisc-cell fusion: Control of fusion pore nucleation and lifetimes by SNARE protein transmembrane domains

    Get PDF
    The initial, nanometer-sized connection between the plasma membrane and a hormone- or neurotransmitter-filled vesicle-the fusion pore- can flicker open and closed repeatedly before dilating or resealing irreversibly. Pore dynamics determine release and vesicle recycling kinetics, but pore properties are poorly known because biochemically defined single-pore assays are lacking. We isolated single flickering pores connecting v-SNARE-reconstituted nanodiscs to cells ectopically expressing cognate, "flipped" t-SNAREs. Conductance through single, voltage-clamped fusion pores directly reported sub-millisecond pore dynamics. Pore currents fluctuated, transiently returned to baseline multiple times, and disappeared ∼6 s after initial opening, as if the fusion pore fluctuated in size, flickered, and resealed. We found that interactions between v- and t-SNARE transmembrane domains (TMDs) promote, but are not essential for pore nucleation. Surprisingly, TMD modifications designed to disrupt v- and t-SNARE TMD zippering prolonged pore lifetimes dramatically. We propose that the post-fusion geometry of the proteins contribute to pore stability.Fil: Wu, Zhenyong. University of Yale; Estados Unidos. University of Yale. School of Medicine; Estados UnidosFil: Auclair, Sarah M.. University of Yale. School of Medicine; Estados Unidos. University of Yale; Estados UnidosFil: Bello, Oscar Daniel. University of Yale. School of Medicine; Estados Unidos. University of Yale; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Vennekate, Wensi. University of Yale. School of Medicine; Estados Unidos. University of Yale; Estados UnidosFil: Dudzinski, Natasha R.. University of Yale; Estados Unidos. University of Yale. School of Medicine; Estados UnidosFil: Krishnakumar, Shyam S.. University of Yale. School of Medicine; Estados Unidos. University of Yale; Estados UnidosFil: Karatekin, Erdem. University of Yale; Estados Unidos. University of Yale. School of Medicine; Estados Unidos. Universite Paris Descartes; Francia. Centre National de la Recherche Scientifique; Franci

    Dilation of fusion pores by crowding of SNARE proteins

    Get PDF
    Hormones and neurotransmitters are released through fluctuating exocytotic fusion pores that can flicker open and shut multiple times. Cargo release and vesicle recycling depend on the fate of the pore, which may reseal or dilate irreversibly. Pore nucleation requires zippering between vesicle-associated v-SNAREs and target membrane t-SNAREs, but the mechanisms governing the subsequent pore dilation are not understood. Here, we probed the dilation of single fusion pores using v-SNARE-reconstituted ~23-nm-diameter discoidal nanolipoprotein particles (vNLPs) as fusion partners with cells ectopically expressing cognate, ’flipped’ t-SNAREs. Pore nucleation required a minimum of two v-SNAREs per NLP face, and further increases in v-SNARE copy numbers did not affect nucleation rate. By contrast, the probability of pore dilation increased with increasing v-SNARE copies and was far from saturating at 15 v-SNARE copies per face, the NLP capacity. Our experimental and computational results suggest that SNARE availability may be pivotal in determining whether neurotransmitters or hormones are released through a transient (’kiss and run’) or an irreversibly dilating pore (full fusion).Fil: Wu, Zhenyong. University of Yale; Estados Unidos. University of Yale. School of Medicine; Estados UnidosFil: Bello, Oscar Daniel. University of Yale. School of Medicine; Estados Unidos. University of Yale; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Thiyagarajan, Sathish. Columbia University; Estados UnidosFil: Auclair, Sarah Marie. University of Yale. School of Medicine; Estados Unidos. University of Yale; Estados UnidosFil: Vennekate, Wensi. University of Yale; Estados Unidos. University of Yale. School of Medicine; Estados UnidosFil: Krishnakumar, Shyam S. University of Yale; Estados Unidos. University of Yale. School of Medicine; Estados UnidosFil: O'Shaughnessy, Ben. Columbia University; Estados UnidosFil: Karatekin, Erdem. University of Yale; Estados Unidos. Universite Paris Descartes; Francia. University of Yale. School of Medicine; Estados Unido

    Adverse drug events associated with linezolid administration: a real-world pharmacovigilance study from 2004 to 2023 using the FAERS database

    Get PDF
    Introduction: Linezolid is an oxazolidinone antibiotic that is active against drug-resistant Gram-positive bacteria and multidrug-resistant Mycobacterium tuberculosis. Real-world studies on the safety of linezolid in large populations are lacking. This study aimed to determine the adverse events associated with linezolid in real-world settings by analyzing data from the US Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS).Methods: We retrospectively extracted reports on adverse drug events (ADEs) from the FAERS database from the first quarter of 2004 to that of 2023. By using disproportionality analysis including reporting odds ratio (ROR), proportional reporting ratio (PRR), Bayesian Confidence Propagation Neural Network (BCPNN), along with the multi-item gamma Poisson shrinker (MGPS), we evaluated whether there was a significant association between linezolid and ADE. The time to onset of ADE was further analyzed in the general population and within each age, weight, reporting population, and weight subgroups.Results: A total of 11,176 reports of linezolid as the “primary suspected” drug and 263 significant adverse events of linezolid were identified, including some common adverse events such as thrombocytopenia (n = 1,139, ROR 21.98), anaemia (n = 704, ROR 7.39), and unexpected signals that were not listed on the drug label such as rhabdomyolysis (n = 90, ROR 4.33), and electrocardiogram QT prolonged (n = 73, ROR 4.07). Linezolid-induced adverse reactions involved 27 System Organ Class (SOC). Gender differences existed in ADE signals related to linezolid. The median onset time of all ADEs was 6 days, and most ADEs (n = 3,778) occurred within the first month of linezolid use but some may continue to occur even after a year of treatment (n = 46).Conclusion: This study reports the time to onset of adverse effects in detail at the levels of SOC and specific preferred term (PT). The results of our study provide valuable insights for optimizing the use of linezolid and reducing potential side effects, expected to facilitate the safe use of linezolid in clinical settings

    4.5 years multi-wavelength observations of Mrk 421 during the ARGO-YBJ and Fermi common operation time

    Get PDF
    We report on the extensive multi-wavelength observations of the blazar Markarian 421 (Mrk 421) covering radio to gamma-rays, during the 4.5 year period of ARGO-YBJ and Fermi common operation time, from August 2008 to February 2013. In particular, thanks to the ARGO-YBJ and Fermi data, the whole energy range from 100 MeV to 10 TeV is covered without any gap. In the observation period, Mrk 421 showed both low and high activity states at all wavebands. The correlations among flux variations in different wavebands were analyzed. Seven large flares, including five X-ray flares and two GeV gamma-ray flares with variable durations (3-58 days), and one X-ray outburst phase were identified and used to investigate the variation of the spectral energy distribution with respect to a relative quiescent phase. During the outburst phase and the seven flaring episodes, the peak energy in X-rays is observed to increase from sub-keV to few keV. The TeV gamma-ray flux increases up to 0.9-7.2 times the flux of the Crab Nebula. The behavior of GeV gamma-rays is found to vary depending on the flare, a feature that leads us to classify flares into three groups according to the GeV flux variation. Finally, the one-zone synchrotron self-Compton model was adopted to describe the emission spectra. Two out of three groups can be satisfactorily described using injected electrons with a power-law spectral index around 2.2, as expected from relativistic diffuse shock acceleration, whereas the remaining group requires a harder injected spectrum. The underlying physical mechanisms responsible for different groups may be related to the acceleration process or to the environment properties.Comment: 17 pages, 9 figures, 5 tables, Accepted for publication in ApJ

    The cosmic ray proton plus helium energy spectrum measured by the ARGO-YBJ experiment in the energy range 3-300 TeV

    Get PDF
    The ARGO-YBJ experiment is a full-coverage air shower detector located at the Yangbajing Cosmic Ray Observatory (Tibet, People's Republic of China, 4300 m a.s.l.). The high altitude, combined with the full-coverage technique, allows the detection of extensive air showers in a wide energy range and offer the possibility of measuring the cosmic ray proton plus helium spectrum down to the TeV region, where direct balloon/space-borne measurements are available. The detector has been in stable data taking in its full configuration from November 2007 to February 2013. In this paper the measurement of the cosmic ray proton plus helium energy spectrum is presented in the region 3-300 TeV by analyzing the full collected data sample. The resulting spectral index is γ=2.64±0.01\gamma = -2.64 \pm 0.01. These results demonstrate the possibility of performing an accurate measurement of the spectrum of light elements with a ground based air shower detector.Comment: 18 pages, 8 figures, preprint submitted to Phys. Rev.

    EAS age determination from the study of the lateral distribution of charged particles near the shower axis with the ARGO-YBJ experiment

    Get PDF
    The ARGO-YBJ experiment, a full coverage extensive air shower (EAS) detector located at high altitude (4300 m a.s.l.) in Tibet, China, has smoothly taken data, with very high stability, since November 2007 to the beginning of 2013. The array consisted of a carpet of about 7000 m2^2 Resistive Plate Chambers (RPCs) operated in streamer mode and equipped with both digital and analog readout, providing the measurement of particle densities up to few particles per cm2^2. The unique detector features (full coverage, readout granularity, wide dynamic range, etc) and location (very high altitude) allowed a detailed study of the lateral density profile of charged particles at ground very close to the shower axis and its description by a proper lateral distribution function (LDF). In particular, the information collected in the first 10 m from the shower axis have been shown to provide a very effective tool for the determination of the shower development stage ("age") in the energy range 50 TeV - 10 PeV. The sensitivity of the age parameter to the mass composition of primary Cosmic Rays is also discussed

    Study of the diffuse gamma-ray emission from the Galactic plane with ARGO-YBJ

    Get PDF
    The events recorded by ARGO-YBJ in more than five years of data collection have been analyzed to determine the diffuse gamma-ray emission in the Galactic plane at Galactic longitudes 25{\deg} < l < 100{\deg} and Galactic latitudes . The energy range covered by this analysis, from ~350 GeV to ~2 TeV, allows the connection of the region explored by Fermi with the multi-TeV measurements carried out by Milagro. Our analysis has been focused on two selected regions of the Galactic plane, i.e., 40{\deg} < l < 100{\deg} and 65{\deg} < l < 85{\deg} (the Cygnus region), where Milagro observed an excess with respect to the predictions of current models. Great care has been taken in order to mask the most intense gamma-ray sources, including the TeV counterpart of the Cygnus cocoon recently identified by ARGO-YBJ, and to remove residual contributions. The ARGO-YBJ results do not show any excess at sub-TeV energies corresponding to the excess found by Milagro, and are consistent with the predictions of the Fermi model for the diffuse Galactic emission. From the measured energy distribution we derive spectral indices and the differential flux at 1 TeV of the diffuse gamma-ray emission in the sky regions investigated.Comment: 11 pages, 6 figures, published in AP
    corecore