191 research outputs found

    Bootstrapping Multi-view Representations for Fake News Detection

    Full text link
    Previous researches on multimedia fake news detection include a series of complex feature extraction and fusion networks to gather useful information from the news. However, how cross-modal consistency relates to the fidelity of news and how features from different modalities affect the decision-making are still open questions. This paper presents a novel scheme of Bootstrapping Multi-view Representations (BMR) for fake news detection. Given a multi-modal news, we extract representations respectively from the views of the text, the image pattern and the image semantics. Improved Multi-gate Mixture-of-Expert networks (iMMoE) are proposed for feature refinement and fusion. Representations from each view are separately used to coarsely predict the fidelity of the whole news, and the multimodal representations are able to predict the cross-modal consistency. With the prediction scores, we reweigh each view of the representations and bootstrap them for fake news detection. Extensive experiments conducted on typical fake news detection datasets prove that the proposed BMR outperforms state-of-the-art schemes.Comment: Authors are from Fudan University, China. Under Revie

    Case Report: A novel heterozygous nonsense mutation in KRIT1 cause hereditary cerebral cavernous malformation

    Get PDF
    Cerebral cavernous malformation (CCM) is a vascular malformation of the central nervous system and mainly characterized by enlarged capillary cavities without intervening brain parenchyma. Genetic studies have identified three disease-causing genes (CCM1/KRIT1, CCM2/MGC4607 and CCM3/PDCD10) responsible for CCM. Here, we characterized a four-generation family diagnosed with CCM and identified a novel heterozygous mutation c.1159C>T, p.Q387X in KRIT1 gene by whole exome sequencing and Sanger sequencing. The Q387X mutation resulted in premature termination of KRIT1 protein, which was predicted to be deleterious by the ACMG/AMP 2015 guideline. Our results provide novel genetic evidence support that KRIT1 mutations cause CCM, and are helpful to the treatment and genetic diagnosis of CCM

    Petrogenesis of granitoids in the eastern section of the Central Qilian Block: Evidence from geochemistry and zircon U-Pb geochronology

    Get PDF
    The Caledonian-age Qilian Orogenic Belt at the northern margin of the Greater Tibetan Plateau comprises abundant granitoids that record the histories of the orogenesis. We report here our study of these granitoids from two localities. The Qingchengshan (QCS) pluton, which is situated in the eastern section of the Central Qilian Block, is dated at ~430–420 Ma. It has high-K calc-alkaline composition with high SiO2 (> 70 wt%), enrichment in large ion lithophile elements (LILEs), depletion in high field strength elements (HFSEs), and varying degrees of negative Sr and Eu anomalies. The granitoids in the Tongwei (TW) area, 150 km east of the QCS, are complex, the majority of which are dated at ~440 Ma, but there also exist younger, ~230 Ma intrusions genetically associated with the Qinling Orogeny. The Paleozoic TW intrusions also have high SiO2, fractionated REE (rare earth element) patterns, but a negligible Eu anomaly. The whole rock Sr-Nd-Hf isotopic compositions suggest that all these Paleozoic granitoids are consistent with melting-induced mixing of a two-component source, which is best interpreted as the combination of last fragments of subducted/subducting ocean crust with terrigenous sediments. The mantle isotopic signature of these granitoids (87Sr/86Sri: 0.7038 to 0.7100, ΔNd(t): −4.8 to −1.3, ΔHf(t): −0.7 to +4.0) reflects significant (~70 %) contribution of the ocean crust derived in no distant past from the mantle at ocean ridges with an inherited mantle isotopic signature. Partial melting of such ocean crust plus terrigenous sediments in response to the ocean closing and continental collision (between the Qilian and Alashan Blocks) under amphibolite facies conditions is responsible for the magmatism. Varying extents of fractional crystallization (±plagioclase, ±amphibole, ±garnet, ±zircon) of the parental magmas produced the observed QCS and TW granitoids. We note that sample HTC12–01 in the TW area shows an A-type or highly fractionated granite signature characterized by elevated abundances and a flat pattern of REEs, weak Nb-Ta anomaly, conspicuous negative Sr and Eu anomalies (Sr/Sr* = 0.09, Eu/Eu* = 0.22), and thus the high 87Sr/86Sr ratio (0.7851), and moderate ΔNd(t) (−4.9) and ΔHf(t) (−2.0), pointing to the significant mantle contribution. Compared with the Paleozoic granitoids, the ~230 Ma granitoids in the TW area represented by sample JPC12–02 have higher initial 87Sr/86Sr (0.7073) and lower ΔNd(t) (−6.2) and ΔHf(t) (−4.5) values, offering an ideal opportunity for future studies on tectonic effects of juxtaposition of younger orogenesis on an older orogen

    Insight Centre for Data Analytics (DCU) at TRECVid 2014: instance search and semantic indexing tasks

    Get PDF
    Insight-DCU participated in the instance search (INS) and semantic indexing (SIN) tasks in 2014. Two very different approaches were submitted for instance search, one based on features extracted using pre-trained deep convolutional neural networks (CNNs), and another based on local SIFT features, large vocabulary visual bag-of-words aggregation, inverted index-based lookup, and geometric verification on the top-N retrieved results. Two interactive runs and two automatic runs were submitted, the best interactive runs achieved a mAP of 0.135 and the best automatic 0.12. Our semantic indexing runs were based also on using convolutional neural network features, and on Support Vector Machine classifiers with linear and RBF kernels. One run was submitted to the main task, two to the no annotation task, and one to the progress task. Data for the no-annotation task was gathered from Google Images and ImageNet. The main task run has achieved a mAP of 0.086, the best no-annotation runs had a close performance to the main run by achieving a mAP of 0.080, while the progress run had 0.043

    Mitigating NO_x emissions does not help alleviate wintertime particulate pollution in Beijing-Tianjin-Hebei (BTH), China

    Get PDF
    Stringent mitigation measures have reduced wintertime PM_(2.5) concentrations by 42.2% from 2013 to 2018 in the BTH. The observed nitrate aerosols have not exhibited a significant decreasing trend and constituted a major fraction (about 20%) of the total PM_(2.5), although the surface-measured NO₂ level has decreased by over 20%. It still remains elusive about contributions of nitrogen oxides (NO_x) emissions mitigation to the nitrate and PM_(2.5) level. The WRF-Chem model simulations of a persistent haze episode in January 2019 in the BTH reveal that NO_x emissions mitigation does not help lower wintertime nitrate and PM_(2.5) concentrations under current conditions in the BTH, because the substantial O₃ increase induced by NO_x mitigation offsets the HNO₃ loss and enhances sulfate and secondary organic aerosols formation. Our results are further consolidated by occurrence of the severe PM pollution in the BTH during the COVID-19 outbreak with a significant reduction of NO₂
    • 

    corecore