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Abstract 

The Caledonian-age Qilian Orogenic Belt at the northern margin of the Greater 

Tibetan Plateau comprises abundant granitoids that record the histories of the 

orogenesis. We report here our study of these granitoids from two localities. The 

Qingchengshan (QCS) pluton, which is situated in the eastern section of the Central 

Qilian Block, is dated at ~430 - 420 Ma. It has high-K calc-alkaline composition with 

high SiO2 (> 70 wt%), enrichment in large ion lithophile elements (LILEs), depletion 

in high field strength elements (HFSEs), and varying degrees of negative Sr and Eu 

anomalies. The granitoids in the Tongwei (TW) area, 150 km east of the QCS, are 

complex, the majority of which are dated at ~440 Ma, but there also exist younger, ~230 

Ma intrusions genetically associated with the Qinling Orogeny. The Paleozoic TW 

intrusions also have high SiO2, fractionated REE (rare earth element) patterns, but a 

negligible Eu anomaly. The whole rock Sr-Nd-Hf isotopic compositions suggest that all 

these Paleozoic granitoids are consistent with melting-induced mixing of a two-

component source, which is best interpreted as the combination of last fragments of 

subducted/subducting ocean crust with terrigenous sediments. The mantle isotopic 

signature of these granitoids (87Sr/86Sri : 0.7038 to 0.7100, εNd(t) : -4.8 to -1.3, εHf(t) : -

0.7 to +4.0) reflects significant (~70%) contribution of the ocean crust derived in no 

distant past from the mantle at ocean ridges with an inherited mantle isotopic signature. 

Partial melting of such ocean crust plus terrigenous sediments in response to the ocean 

closing and continental collision (between the Qilian and Alashan Blocks) under 

amphibolite facies conditions is responsible for the magmatism. Varying extents of 

fractional crystallization (±plagioclase, ±amphibole, ±garnet, ±zircon) of the parental 

magmas produced the observed QCS and TW granitoids. We note that sample HTC12-

01 in the TW area shows an A-type or highly fractionated granite signature 
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characterized by elevated abundances and a flat pattern of REEs, weak Nb-Ta anomaly, 

conspicuous negative Sr and Eu anomalies (Sr/Sr* = 0.09, Eu/Eu* = 0.22), and thus the 

high 87Sr/86Sr ratio (0.7851), and moderate εNd(t) (-4.9) and εHf(t) (-2.0), pointing to the 

significant mantle contribution. Compared with the Paleozoic granitoids, the ~230 Ma 

granitoids in the TW area represented by sample JPC12-02 have higher initial 87Sr/86Sr 

(0.7073) and lower εNd(t) (-6.2) and εHf(t) (-4.5) values, offering an ideal opportunity 

for future studies on tectonic effects of juxtaposition of younger orogenesis on an older 

orogen. 

 

Keywords: granitoids; Central Qilian Block; ocean crust; continental collision 

 

1 Introduction 

Granitoids are abundant in all the orogenic belts worldwide. They are commonly 

classified as I-, S-, or A-types on the basis of their source rocks or compositional 

characteristics (Bonin 2007; Breiter et al. 2014; Champion and Bultitude 2013; 

Chappell 1999; Chappell and White 1992; Clements et al. 2011). Recent studies have 

shown that the petrogenesis of granitoids are complex and cannot be described in terms 

of the above simple classification. Many granitoids in orogenic belts show 

characteristics of source or melt mixing (Gray and Kemp 2009; Peng et al. 2015; Xia 

et al. 2014; Yang et al. 2015; Zhu et al. 2015). Hence, classification of the petrogenesis 

of granitoids and using their geochemistry to indicate tectonic settings must be 

exercised with caution. 

The Qilian Orogenic Belt (QOB) is a subduction-accretionary orogenic belt, which 

occupies an important position at the northern margin of the Greater Tibetan Plateau. 

The QOB records the histories of the collisional orogenesis, but how to correctly read 
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the histories of the QOB remains controversial (Gehrels et al. 2003a; Huang et al. 2015; 

Song et al. 2013, 2014; Wu et al. 2006b, 2010; Xiao et al. 2009; Yang et al. 2015). 

In this paper, we focus on the tectonically important yet poorly studied granitoids 

in the eastern section of the Central Qilian Block, located in the conjunction of the 

Qilian and Qinling Orogenic Belts, which is thus of particular tectonic significance. We 

present age data, major and trace element analysis and Sr-Nd-Hf isotope compositions 

to place constraints on the petrogenesis of these granitoids in the Central Qilian Block 

in the context of the tectonic evolution of the QOB. 

 

2 Geological setting and petrography 

The QOB is bounded by the North Qaidam Ultra-High-Pressure Metamorphic 

(UHPM) Belt and West-Qinling Orogenic Belt to the south, by the Alashan Block to 

the north, and is offset by the Altyn-Tagh Fault to the northwest (Fig. 1a) (Pan et al. 

2009). Debate remains on the tectonic division of the QOB. The most recent suggested 

subdivisions from north to south are as follows (Fig. 1b): (1) The North Qilian Orogenic 

Belt (NQOB), thought to have resulted from the closure of the North Qilian Ocean, is 

characterized by arc volcanic rocks, exhumed high-pressure metamorphic rocks (Song 

et al. 2009a; Xia et al. 2012; Xiao et al. 2013; Zhang et al. 2009), and ophiolite 

sequences (Hou et al. 2006a; Shi et al. 2004; Xia and Song 2010; Zhang et al. 2003); 

(2) The Central Qilian Block (CQB), considered as an arc-accretionary system, is 

dominated by Precambrian basement overlain by the Paleozoic sedimentary lithologies 

(Tung et al. 2012; Xiao et al. 2009; Xu et al. 2010a, b), as well as the synchronous 

granitoids, granitic gneisses, amphibolites and minor granulites (Huang et al. 2015; 

Song et al. 2013, 2014). Recent studies suggest that the Central Qilian Block and 

Qaidam Block have close affinities with the Yangtze Craton (Darby and Gehrels 2006; 
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Gehrels et al. 2003b; Tung et al. 2012; Xu et al. 2015), but this is debatable (Huang et 

al. 2015). Furthermore, the subdivision of the South Qilian Orogenic Belt (dotted line 

in Fig. 1b) composed of volcanic rocks and limestones (Xiao et al. 2009) on the basis 

of limited study, is also questionable; (3) The North Qaidam UHPM Belt is dominated 

by granitic and pelitic gneisses with eclogite lenses. Previous studies indicate that the 

North Qaidam UHPM Belt has experienced the processes from continental deep 

subduction to subsequent exhumation (Liu et al. 2012; Song et al. 2009b, 2014; Zhang 

et al. 2010); (4) The Qaidam Block (QDB), has a Precambrian meta-crystalline 

basement overlain by the Paleozoic-Mesozoic sedimentary strata (Song et al. 2013, 

2014). 

The Proterozoic strata in our study area in the eastern section of the CQB mainly 

contain the Huangyuan Group, Maxianshan Group, Xinglongshan Group and Gaolan 

Group, most of which are covered by Mesozoic-Cenozoic strata (Guo et al. 1999). The 

main intrusive rocks are Qingchengshan (QCS) Early Paleozoic biotite monzogranites 

intruding the Mesoproterozoic Gaolan Group (Fig. 1c) (Chen et al. 2008). Chen et al. 

(2008) reported two groups of zircon U-Pb ages for the QCS pluton (444 ± 3 Ma and 

414 ± 3 Ma), and interpreted the former age as representing the emplacement of the 

pluton and the latter age as somewhat ambiguous thermal overprint. From the QCS 

pluton eastward, the synchronous Early Paleozoic calc-alkaline granitoids which 

intruded the Early Silurian Huluhe Group are also exposed in the Tongwei (TW) area 

spatially coexisting with minor Early Mesozoic plutons outcropped in the gullies as 

previously documented (Fig. 1d) (Zhang et al. 2005b), but they are essentially unstudied. 

We have collected fresh samples from the QCS pluton and in the TW area (Fig. 2). 

The QCS pluton is compositionally biotite monzogranite dominated by plagioclase (30 

~ 40 vol.%), K-feldspar (30 ~ 40 vol.%), quartz (30 ~ 35 vol.%), biotite (5 ~ 10 vol.%) 
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and minor accessory minerals such as zircon and magnetite. The granitoids in the TW 

area are mainly monzogranites and biotite granites, composed of K-feldspar (20 ~ 25 

vol.%), plagioclase (35 ~ 40 vol.%) quartz (30 ~ 35 vol.%), and biotite (< 5 vol.%) with 

minor accessory minerals such as titanite and zoisite. 

 

3 Analytical methods 

We selected 4 samples (QCS12-07; QCS12-10; ABYC12-01; JPC12-02) for 

zircon U-Pb dating and 9 samples for whole-rock major and trace element analysis. All 

of them were analyzed for Sr-Nd-Hf isotopes. 

3.1 Zircon U-Pb isotopic dating 

Zircon separation was done using combined methods of heavy liquid and magnetic 

extraction plus hand-picking under a binocular in the Langfang Institute of Regional 

Geological Survey. The selected zircon grains were mounted in an epoxy resin disk and 

polished to expose the interior for imaging and analysis. All the polished zircon grains 

were examined using cathodoluminescence (CL) images at China University of 

Geosciences in Wuhan (CUGW). Zircon U-Pb dating was done using LA-ICP-MS at 

China University of Geosciences in Beijing (CUGB). Detailed analytical procedures 

are given in Song et al. (2010a). The data reduction was done using Glitter 4.4.1, 

followed by common Pb correction according to Andersen (2002). The weighted mean 

age calculations and concordia diagrams were done using isoplot 3.0 (Ludwing 2003). 

3.2 Whole rock major and trace element analysis 

The whole-rock major and trace element analysis was done at CUGB, using 

Leeman Prodigy inductively coupled plasma-optical emission spectroscopy (ICP-OES) 

and Agilent-7500a inductively coupled plasma mass spectrometry (ICP-MS), 

respectively. The analytical uncertainties are generally less than 1% for most major 

Page 6 of 49



 

elements with the exception of TiO2 (~1.5%) and P2O5 (~2%). The loss on ignition was 

measured by placing 1 g of sample powder in the furnace at 1000℃ for several hours 

before cooled in a desiccator and reweighted. The Analytical details are given in Song 

et al. (2010b). 

3.3 Sr-Nd-Hf isotope analysis 

The Sr-Nd-Hf isotope analysis was done at Guangzhou Institute of Geochemistry, 

Chinese Academy of Sciences (GIG-CAS), following the methods by Li et al. (2006). 

The rock powders were dissolved with HF-HNO3 mixtures before Sr, Nd and Hf 

separation by small Sr Spec resin columns and Hf-Nd cation exchange resin columns 

to obtain purified Sr, Nd and Hf fractions. The Sr isotope analysis was done using a 

Neptune Plus multi-collector inductively coupled plasma mass spectrometer (MC-ICP-

MS), and Nd-Hf isotope analyses were done using a Micromass IsoProbe MC-ICP-MS. 

All measured 87Sr/86Sr, 143Nd/144Nd and 176Hf/177Hf ratios were normalized to 86Sr/88Sr 

= 0.1194, 146Nd/144Nd = 0.7219 and 179Hf/177Hf = 0.7325, respectively. During the 

course of this study, analyses of NBS987 standard gave 87Sr/86Sr = 0.710283 ± 0.000005 

(n = 13, 2σ). The 143Nd/144Nd ratios of the standard BHVO-2 and JB-3 were 0.512977 

± 0.000014 (n = 8, 2σ) and 0.513053 ± 0.000018 (n = 13, 2σ), respectively. And the 

mean 176Hf/177Hf ratios for BHVO-2 and JB-3 were 0.283099 ± 0.000015 (n = 13, 2σ) 

and 0.283216 ± 0.000015 (n = 6, 2σ), respectively. The values of rock standards BHVO-

2 and JB-3 are within the analytical error of the recommended values (GeoREM, 

http://georem.mpch-mainz.gwdg.de/). 

 

4 Analytical data 

4.1 Zircon U-Pb geochronology 

Representative zircon Cathodoluminescence (CL) images for the QCS pluton and 
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TW granitoids are shown in Fig. 3. LA-ICP-MS zircon U-Pb data are given in Table 1 

and presented in Fig. 4. 

Zircons in sample QCS12-07 (from the QCS pluton) are euhedral and elongated 

crystals with oscillatory-zoning of magmatic origin (Fig. 3a), having variably high 

Th/U (0.18 - 0.77). Twenty two analyses yield a weighted mean 206Pb/238U age of 420.2 

± 2.4 Ma (MSWD = 0.024) (Fig. 4a). Nine analyses of zircons in sample QCS12-10 

(from the QCS pluton) with high Th/U (0.41 - 0.77) give a weighted mean 206Pb/238U 

age of 430.0 ± 4.1 Ma (MSWD = 0.057) (Fig. 4b). 

Zircons in sample ABYC12-01 (from the TW granitoids) show variable Th/U 

(0.42 - 1.65), and twenty four analyses of zircons give a weighted mean 206Pb/238U age 

of 440.5 ± 2.5 Ma (MSWD = 0.12) (Fig. 4c). Nineteen analyses of zircons in sample 

JPC12-02 (from the TW granitodis) show varying Th/U values (0.31 - 1.90) and 

oscillatory zoning (Fig. 3d), yielding a weighted mean 206Pb/238U age of 229.8 ± 1.5 Ma 

(MSWD = 0.48) (Fig. 4d). 

4.2 Whole-rock major and trace element data 

Whole-rock major and trace element data of 9 samples (5 QCS samples, 4 TW 

samples) are given in Table 2. 

All the QCS samples show high SiO2 (70.6 - 75.7 wt%) and relatively high alkalis 

(K2O + Na2O = 6.4 - 7.8 wt%). These data plot in the granite field in the TAS diagram 

(Fig. 5a). Most of the samples display high-K calc-alkaline (Fig. 5b) and metaluminous 

to peraluminous (A/CNK = 0.99 - 1.12) characteristics (Fig. 5c). In SiO2 variation 

diagrams (Fig. 6), most oxides do not exhibit well defined trends. 

Trace elements of the QCS samples show enrichment of LILEs (Rb, K, Ba) and 

relative depletion of HFSEs (Nb, Ta, Ti, P) (Fig. 7a) with varying Nb/Ta ratios (12.3 - 

18.4). Chondrite-normalized REE (rare earth element) patterns of these samples show 
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varying enrichment of LREEs (light rare earth elements) ([La/Yb]N = 13.6 - 96.3) and 

variably fractionated HREEs (heavy rare earth elements) ([Dy/Yb]N = 0.88 - 1.99) (Fig. 

7c). The samples also display variable negative Sr and Eu anomalies (Sr/Sr* = 0.14 - 

0.82, Eu/Eu* = 0.40 - 0.96). 

    The ~440 Ma TW samples have high SiO2 (70.8 - 74.7 wt%), and variable 

K2O/Na2O (0.70 - 1.76), plotting in the granite field in the TAS diagram (Fig. 5a) and 

displaying calc-alkaline to high-K calc-alkaline characteristics in the K2O - SiO2 

diagram (Fig. 5b). They have relatively high A/CNK values (0.96 - 1.11) (Fig. 5c). Note 

that sample HTC12-01 has the highest SiO2 (74.7 wt%) and lowest CaO (0.46 wt%). 

The ~230 Ma sample (JPC12-02) also shows high SiO2 (71.8 wt%), high-K calc-

alkaline (K2O/Na2O = 1.11) and metaluminous (A/CNK = 1.01) characteristics. 

In model ocean crust normalized trace element diagram, the ~440 Ma TW samples 

show enrichment of LILEs (Rb, Ba, K) and depletion of HFSEs (Nb, Ta, Ti, P) (Fig. 

7b). Most of these samples show elevated LREEs/HREEs ratios ([La/Yb]N = 44.7 - 73.2) 

without significant Sr and Eu anomalies (Sr/Sr* = 1.03 - 1.18, Eu/Eu* = 0.88 - 1.02), 

except for sample HTC12-01 which shows a flat HREE pattern, lower LREEs/HREEs 

ratio ([La/Yb]N = 4.0, [Dy/Yb]N = 0.88) and pronounced negative Sr and Eu anomalies 

(Sr/Sr* = 0.09, Eu/Eu* = 0.22). The ~230 Ma TW sample shows similar characteristics 

of trace element systematics with the ~440 Ma samples ([La/Yb]N = 80.7, Eu/Eu* = 

0.88) (Fig. 7d). 

4.3 Sr-Nd-Hf isotopes 

The whole-rock Sr-Nd-Hf isotope data are given in Table 3. 

The QCS samples show variable initial 87Sr/86Sr (0.7038 to 0.7100, calculated at 

430 Ma), moderate εNd(t) (-4.8 to -1.3) and relatively high εHf(t) (-0.7 to +4.0) (Fig. 11). 

The mantle isotopic signature of the QCS samples reflects significant contribution to 
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juvenile crustal growth. The ~440 Ma TW samples show relatively low initial 87Sr/86Sr 

(0.7038 - 0.7053), and high εNd(t) (-2.1 to -3.1) and εHf(t) values (+1.9 to +2.2) (Fig. 

11), except for sample HTC12-01 with extremely high 87Sr/86Sr (0.7851, see below), 

while the ~230 Ma sample shows modest initial 87Sr/86Sr (0.7073), low εNd(t) (-6.2), 

and εHf(t) (-4.5). 

 

5 Discussion 

5.1 Petrogenesis of the QCS pluton 

5.1.1 S-type granites or Adakite/Adakitic rocks? 

A previous study (Chen et al. 2008) suggested that the QCS pluton is peraluminous 

S-type granites derived from partial melting of meta-greywackes in middle-upper crust 

conditions. However, there are no Al2O3-rich phases (e.g., cordierite, muscovite, garnet 

etc.) as would be expected for S-type granites. Garnet only appears as a vein mineral 

(Fig. 2a). As is the general case, S-type granites commonly contain enclaves 

representing restite of crustal melting (Chappell and White 1991; Chappell and Wybom 

2012), but such enclaves are absent in the QCS pluton. In addition, the metaluminous 

to peraluminous characteristics (A/CNK = 0.99 - 1.12) and the roughly negative P2O5 - 

SiO2 correlation (Fig. 6) which is used to distinguish I-type from S-type granites due to 

the high apatite solubility in peraluminous melt (Chappell 1999), suggest that the QCS 

pluton is not S-type granites derived from meta-sedimentary protolith. 

Geochemically, although the QCS pluton has high Sr/Y (6.6 - 53.1) and La/Yb 

(19.0 - 134.2) ratios, it could be mistakenly interpreted as adakite or adakitic rocks. In 

Sr/Y vs. Y and La/Yb vs. Yb diagrams (Fig. 10a, b) which are commonly used to 

distinguish adakite from normal island arc rocks, our data and the data from the 

literature (Chen et al. 2008) plot cross the field of adakite and of normal arc andesite, 
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dacite, and rhyolite (ADR). However, the QCS pluton has low Al2O3 (< 15%), modest 

Sr (< 400 ppm) and low Y (< 20 ppm) and Yb (< 2 ppm). They are different from 

adakite and adakitic rocks by definition (e.g., high Sr > 400 ppm; Castillo 2012). Hence, 

the QCS pluton also cannot be defined as adakite or adakitic rocks. 

5.1.2 High silica granites and high Sr/Y, La/Yb ratios 

Note that the QCS pluton has high silica content (> 70 wt%) and the major element 

oxides (our data and literature data) do not show obvious evolution trend with SiO2 (Fig. 

6). It is likely that these high silica granites represent residual liquids with a felsic 

magmatic crystal mush (Lee and Morton 2015) at the late stage of magma evolution. 

As mentioned above, the QCS pluton shows high Sr/Y (6.6 - 53.1) and La/Yb (19.0 - 

134.2) ratios. Additionally, the QCS pluton shows obvious enrichment of LREEs and 

depletion of HREEs relative to model bulk continental crust composition (BCC, 

Rudnick and Gao 2003) (Fig 7c). It is thus important to evaluate the effect of fractional 

crystallization of relevant minerals phases (e.g., plagioclase, amphibole, zircon, garnet). 

Firstly, fractional crystallization of plagioclase could play an important role in 

magma evolution as evidenced by decreasing Sr with increasing SiO2 (Fig. 8a) and 

increasing Rb/Sr with decreasing Sr (Fig. 8b). Fractional crystallization of amphibole 

could cause high Sr/Y and La/Yb ratios, whereas the evolution trend with amphibole 

fractionation only in our simulation do not fit well with the data in Sr/Y vs. Y space 

(Fig. 10a, line2). Besides, amphibole fractionation will cause the residual melt to 

develop a concave HREE pattern (Moyen 2009), which is not observed (Fig. 7c). 

Crystallization of zircon is expected to deplete HREEs in the melt because of strong 

compatibility of HREEs in zircons (Thomas et al. 2002). Fig. 9a shows that Zr/Sm 

indeed decreases with increasing SiO2, which is consistent with zircon crystallization. 

However, Fig. 9b shows that zircon crystallization cannot explain the HREE depletion 
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as approximated with Y. The relatively varying HREE fractionation (e.g., [Dy/Yb]N = 

0.88 - 1.99) may be caused by garnet, which is highly compatible for the progressively 

heavier HREEs. Generally, garnet is regarded as a characteristic mineral of S-type 

granites, mainly formed by peritectic reaction during partial melting of pelites and 

psammites or other meta-sedimentary rocks (Sylvester 1998; Taylor and Stevens 2010). 

But in this study, garnet only appears as liquidus phase in veins (Fig. 2a) of late stage 

of magma evolution (Dahlquist et al. 2007; René and Stelling 2007). We thus suggest 

that the primitive magmas parental to the QCS pluton may have experienced fractional 

crystallization of garnet, resulting in HREE depletion. 

With all the above considered, we carried out calculations shown in Fig. 10a, b, 

where the high Sr/Y and La/Yb ratios can be explained by fractional crystallization of 

garnet, plagioclase and amphibole. 

5.1.3 Constraints on the source 

The QCS pluton has varying initial 87Sr/86Sr (0.7038 to 0.7100) and moderate εNd(t) 

(-4.8 to -1.3) showing scattered but significant inverse trend falling between S- and I-

type granites in comparison with the classic Lachalan Fold Belt (LFB) granitoids (Fig. 

11a; McCulloch and Chappell 1982), which is consistent with mixing of sources with 

varying compositions (Niu and Batiza 1997). Such isotopic compositions as well as 

high Sr/Y, La/Yb ratios may be generated by several processes, including (a) classic 

model of “slab melting” under eclogite facies (Defant and Drummond 1990; Kelemen 

et al. 2003; Yogodzinski and Kelemen 1998); (b) lower crustal origin (e.g., partial 

melting of thicken or delaminated lower crust) (Chung et al. 2003; Wang et al. 2005, 

2007, 2012); (c) partial melting of remaining part of the subducted ocean crust with 

terrigenous sediments under amphibolite facies conditions (Mo et al. 2008; Niu 2005; 

Niu et al. 2013). 
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The traditional model of partial melting of subducted ocean crust is suitable for 

explaining the petrogenesis of adakite having typical geochemical characteristics (e.g., 

high Sr > 400 ppm, Al2O3 >15 wt%), but cannot account for the QCS pluton. Lower 

crustal origin is also implausible because the εNd(t) (-4.8 to -1.3) of QCS pluton is far 

above the Nd isotope compositions of mature lower crust. The isotopic compositions 

with εNd(t) = -4.8 to -1.3 and εHf(t) = -0.7 to +4.0 of QCS pluton indicate significant 

mantle contribution. Melting of delaminated lower crust in the mantle conditions can 

be precluded because (1) the QCS pluton has too low MgO (0.16 - 0.76 wt%) and thus 

records no interaction between felsic magmas and mantle peridotite and (2) the 

mechanism of lower crust delamination is still unclear (Niu et al. 2013). 

According to the closure time of the North Qilian Ocean (~445 Ma) followed by 

continental collision (~435 - 420 Ma) (Song et al. 2013), the ~430 Ma QCS pluton 

located south of the NQOB is most likely linked with the magmatic response to the 

collision between the Central Qilian Block and Alashan Block. Partial melting of 

remaining part of the subducted ocean crust with terrigenous sediments under 

amphibolite facies conditions offers a better explanation (Mo et al. 2008; Niu 2005; Niu 

et al. 2013). In this model, the retarded underthrusting rate of subducted slab upon 

collision causes high T/P conditions, making the highly altered ocean crust to melt when 

intersecting the hydrous basaltic solidus under amphibolite facies conditions and 

generate andesitic magmas (Mo et al. 2008; Niu et al. 2013). 

In our study, we infer that the QCS pluton is the product of the varying extents of 

fractional crystallization (plagioclase + amphibole + garnet plus minor phase like zircon 

and other accessary phases) from parental magmas formed as elaborated above. The Sr-

Nd-Hf isotopes are also consistent with the modeling (Fig. 11a, b). We use the data of 

pillow basalts from the North Qilian ophiolite suites representing the remaining part of 
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the ocean crust and of Shaliuhe Gneisses representing terrigenous sediments as the two 

end-members. The calculation shows that isotopically mantle contribution from ocean 

crust can reach up to 70% and is in accord with the melting-induced mixing of two-

component source. In addition, we choose the model BCC composition as representing 

the primitive andesitic magmas parental to the high silicic QCS pluton to evaluate the 

magma evolution in terms of fractional crystallization. The results show that the 

primitive magmas with ~50% fractional crystallization (Fig 7c) can produce the 

signature of the QCS pluton. 

5.2 Petrogenesis of the TW granitoids 

Our zircon U-Pb age data show that there are two magmatic emplacement events 

in the TW area (440.5 ± 2.5 Ma and 229.8 ± 1.5 Ma). It is noteworthy that sample 

HTC12-01 shows relatively high alkalis (K2O+Na2O = 8.41 wt%), low CaO (0.46 wt%), 

high Nb (39.3 ppm) and Ta (2.95 ppm), and a flat REE pattern with strong negative Sr 

and Eu anomalies (Sr/Sr* = 0.09, Eu/Eu* = 0.22) (Fig. 7b, 7d), indicating the possibility 

of A-type or highly fractionated granites. Using the conventional discrimination 

indexes for A-type, such as 10000*Ga/Al, Zr+Nb+Ce+Y et al. (Eby 1992; Whalen et 

al. 1987), it is hard to distinguish the type of sample HTC12-01 because of only one 

sample. As is known, the A-type or highly fractionated granites with high LILE and 

HFSE abundances as well as pronounced negative anomalies (Sr, Eu, Ba, Ti) are largely 

due to protracted fractional crystallization (e.g., plagioclase, ilmenite) (Anderson et al. 

2003; Smith et al. 1999). Isotopically, sample HTC12-01 show extremely high 87Sr/86Sr 

ratio (0.7851), which is consistent with elevated radiogenic ingrowth of 87Sr because of 

the depletion of Sr (63 ppm) and high Rb/Sr ratio (5.43) (Shao et al. 2015). The 

moderate εNd(t) (-4.9) and εHf(t) (-2.0) may point to the significant mantle contribution. 

However, further study is warranted. 
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The other ~440 Ma TW granitoids show high SiO2 (70.8 - 71.6 wt%), relatively 

high Sr (599 - 907 ppm), low Y (5.2 - 6.5 ppm), low Yb (0.50 - 0.53), high Sr/Y (92.3 

- 174.4) and La/Yb (62.3 - 102.1) ratios, negligible Eu anomaly (Eu/Eu* = 0.88 - 1.02), 

and relative HREE fractionation ((Dy/Yb)N = 1.31 - 1.50). The isotopic compositions 

show relatively low initial 87Sr/86Sr (0.7038 to 0.7053), and high εNd(t) (-2.1 to -3.1) 

and εHf(t) values (+1.9 to +2.2) (Fig. 11a, b), suggesting mantle contribution to the ~440 

Ma TW granitoids through processes elaborated above for the QCS pluton plus 

amphibole + garnet-dominated fractionation to explain their adakitic features (Fig. 7d; 

Fig. 10c, d). 

As for the ~230 Ma TW granitoids, sample JPC12-02 has high SiO2 (71.8 wt%), 

Sr (534 ppm), Sr/Y (80.7) and La/Yb (112.5) values, low Y (6.6 ppm) and Yb (0.50 

ppm) contents (Fig. 10c, d), and also shares some geochemical similarities with the 

~440 Ma TW granitoids, except for the relatively higher initial 87Sr/86Sr (0.7073) and 

lower εNd(t) (-6.2) and εHf(t) (-4.5) values, implying more crust material involvement in 

the petrogenesis, which is genetically associated with the Qinling Orogeny (see below). 

5.3 Tectonic significance of the Qilian Orogenic Belt 

There has been a long standing debate on the tectonic evolution of the Qilian 

Orogenic Belt. Previous studies focus more on the NQOB concerning the continental 

breakup, seafloor spreading, seafloor subduction and continental collision. The North 

Qilian Ocean was commonly supposed to open at ~750 Ma as a consequence of breakup 

of Rodinia supercontinent (Song et al. 2013; Tseng et al. 2006), then subduction 

occurred some ~200 Myrs later due to the formation of sufficiently cold and thickened 

lithosphere (Niu et al. 2003b). 

In contrast, Huang et al. (2015) suggested that an Early Paleozoic ocean basin (i.e., 

the Qilian Ocean) could exist between the Qaidam Block and Central Qilian Block in 
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the Neoproterozoic, whereas the back-arc basin (i.e., the North Qilian Ocean) was 

developed subsequently between the Central Qilian Block and Alashan Block. The 

recognition of the Qilian Ocean defined above, stretching from the Qaidam Block to 

West-Qinling Orogenic Belt, has been verified by some studies (Huang et al. 2015; Wu 

et al. 2006a, Xu et al. 2006; Yang et al. 2015; Zhang et al. 2013). Niu (2014) proposed 

that back-arc basin originated from within overriding continental plate in response to 

the fast trench retreat. Therefore, the northward subduction of the Qilian Ocean seafloor 

may result in the development of the North Qilian Ocean (back-arc basin) (Huang et al. 

2015). The Qilian Ocean was closed at ~460 - 450 Ma (Huang et al. 2015; Yang et al. 

2015), subsequently followed by the closure of the North Qilian Ocean at ~445 Ma 

(Song et al. 2013). The QCS pluton and TW granitoids are probably generated in such 

tectonic setting when the North Qilian Ocean was closed. 

Currently, an issue under hot debate concerns the subduction tectonic models for 

the North Qilian Ocean, e.g., northward subduction model (Gehrels et al. 2003a; Song 

et al. 2013; Yin et al. 2007), southward subduction or bidirectional subduction models 

(Wu et al. 2006b, 2010; Xia et al. 2003; Xiao et al. 2009). As Fig. 1b shown, 

synchronous granitoids are widespread in the entire QOB. The single subduction 

tectonic model cannot account for these granitic magmatic activities in the CQB. 

As far as the eastern range of the North Qilian seafloor (i.e., the Qilian Ocean’s 

back-arc basin), its subduction polarity has not yet been recognized for the lack of 

detailed investigation of geological records and much of the area in eastern section of 

the CQB are covered by Mesozoic-Cenezoic strata. According to this study, we only 

emphasize that the North Qilian seafloor may have undergone southward subduction 

beneath the CQB which is more feasible for explaining the petrogenesis of granitoids 

represented by the QCS pluton and TW granitods in the eastern section of the CQB, in 
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accord with the closure/collision time. It provides insights into a genuine understanding 

of the entire QOB evolution. 

5.4 The significance of ~230 Ma granitoids 

Note that sample JPC12-02 from the TW area has an emplacement age of 229.8 

± 1.5 Ma, it could be interpreted as reflecting post-collisional event of the Qilian 

Orogeny. However, granitoids with such young age are absent elsewhere in the QOB. 

On the other hand, the coeval granitoid magmatism is abundant in the area adjacent to 

the Qinling Orogen, especially in the Qingshui area (Fig. 1b). We thus consider that 

the granitoids represented by sample JPC12-02 may actually be genetically associated 

with the Qinling Orogeny (Dong et al. 2011; Wang et al. 2013), which offers an ideal 

opportunity for future studies on tectonic effects of juxtaposition of younger 

orogenesis on older orogens. 

 

6 Conclusions 

(1) The Qingchengshan (QCS) pluton was emplaced at ~430 - 420 Ma, characterized 

by high SiO2, high-K calc-alkaline, and high Sr/Y, La/Yb ratios. The diverse 

granitoids in the Tongwei (TW) area have been identified to include entirely 

different two magmatic events of 440.5±2.5 Ma and 229.8±1.5 Ma, with high Sr/Y, 

La/Yb ratios and obvious enrichment of LREEs over HREEs, except for one 

sample with characteristics of A-type or highly fractionated granites. 

(2) The primitive magmas parental to the Qingchengshan (QCS) pluton and the 

Tongwei (TW) Early Paleozoic granitoids were produced by partial melting of 

remaining fragments of the subducted ocean crust with terrigenous sediments under 

amphibolite facies conditions in response to continental collision; such parental 

magmas have evolved to give rise to the observed compositions through varying 
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extents of fractional crystallization. 

(3) The closure of the North Qilian Ocean and the onset of the Central Qilian-Alashan 

Block collision induced syn-collisional magmatism, generating the ~440 - 420 Ma 

Qingchengshan (QCS) pluton and Tongwei (TW) Early Paleozoic granitoids in the 

eastern section of the Central Qilian Block. The ~230 Ma granitoids in the Tongwei 

area are genetically associated with the Qinling Orogeny. Further research on 

granitoids in the Tongwei area will be important for tectonic evolution of the region 

in a greater context. 
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Figure Captions 

Fig. 1 (a) Schematic map showing major tectonic units of the Qilian Orogenic Belt and 

its adjacent areas (after Huang et al. 2015). (b) Simplified geological map showing the 

distribution of granitoids of varying age in the Qilian Orogenic Belt (modified from 

Geological Atlas of China 2001 and Song et al. 2013). (c) Geological map of the 

Qingchengshan (QCS) pluton and (d) Geological map of the Tongwei (TW) area 

showing the location of granitoid outcrops with sampling sites. The zircon U-Pb age 
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data in (b) are from Qian et al. (1998), Su et al. (2004), Wu et al. (2006b, 2010), Yong 

et al. (2008), Li et al. (2010), Chen et al. (2012), Qi (2012), and Yang et al. (2015). 

 

Fig. 2 (a) Field photograph showing garnet crystals in a pegmatite vein in the 

Qingchengshan (QCS) pluton. (b) Representative photomicrograph showing the 

mineral assemblages of the Qingchengshan pluton (QCS12-10). (c), (d), (e) and (f) are 

photomicrographs of other samples (ABYC12-01, JPC12-02, CCC12-01, HTC12-01) 

in the Tongwei (TW) area, respectively. Mineral abbreviations: Bi-biotite, Pl-

plagioclase, Q-quartz, Ttn-titanite, Mc-microcline, Zo-zoisite. 

 

Fig. 3 Cathodoluminescence (CL) images of representative zircons for the 

Qingchengshan (QCS) pluton (QCS12-07, QCS12-10) and Tongwei (TW) granitoids 

(ABYC12-01, JPC12-02). Small solid circles are spots for U-Pb isotope analysis. 

 

Fig. 4 Concordia diagrams of U-Pb zircon ages for the Qingchengshan (QCS) pluton 

(QCS12-07, QCS12-10) and Tongwei (TW) granitoids (ABYC12-01, JPC12-02). 

 

Fig. 5 (a) The total alkali vs. silica (TAS) diagram (after Middlemost 1994). (b) The 

K2O vs. SiO2 diagram (after Peccerillo and Taylor 1976) and (c) The A/NK vs. A/CNK 

diagram used for the classification of Qingchengshan (QCS) pluton and Tongwei (TW) 

granitoids. Red circles are our data in this study for the Qingchengshan pluton, and grey 

circles are the literature data for the Qingchengshan pluton (Chen et al. 2008). Other 

symbols are the samples from the Tongwei area (JPC12-02, ABYC12-01, HTC12-01, 

CCC12-01). 
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Fig. 6 SiO2 variation diagrams for major element oxides on the Qingchenshan (QCS) 

pluton. Red circles are our new data, and grey circles are the literature data (Chen et al. 

2008). 

 

Fig. 7 (a), (b) Bulk ocean crust normalized (Niu and O’Hara 2003a) trace-element 

patterns for the Qingchengshan (QCS) pluton and Tongwei (TW) granitoids, 

respectively. (c), (d) Chondrite-normalized (Sun and McDonough 1989) rare earth 

element (REE) patterns for the Qingchengshan pluton and Tongwei granitoids, 

respectively. Bulk composition of continental crust (BCC) is plotted for comparison. 

The solid gray lines in (c) are modal curves of fractional crystallization (from the top, 

the mass fractions of fractional crystallization: 10%, 20%, 30%, 40%, 50%, 60%) with 

the assemblage of 20% amphibole + 70% plagioclase + 5% garnet for the 

Qingchengshan pluton. The solid gray lines in (d) are the same as in (c) with the 

assemblage of 55% amphibole + 35% plagioclase + 5% garnet for Tongwei granitoids. 

 

Fig. 8 (a) Sr vs. SiO2 and (b) Rb/Sr vs. Sr diagrams for the Qingchengshan (QCS) pluton, 

showing the effect of fractional crystallization of plagioclase. Red circles are our new 

data, and grey circles are the literature data (Chen et al. 2008). 

 

Fig. 9 (a) SiO2 vs. Zr/Sm diagram for the Qingchengshan pluton (red circles, QCS) and 

Tongwei (TW) Early Paleozoic granitoids (CCC12-01, ABYC12-01), respectively, 

showing the effect of zircon crystallization during magma evolution, reflected by rapid 

decrease of Zr/Sm accompanied by rapid increase of SiO2. (b) Y vs. Zr/Sm diagram, 

showing the scattered inverse correlation of heavy rare earth elements (approximated 

by using Y) with Zr/Sm, indicates that crystallization of zircon is not the cause of the 

Page 33 of 49



 

HREE depletion of most of these samples. 

 

Fig. 10 Plots of (a), (c) Sr/Y vs. Y and (b), (d) La/Yb vs. Yb (Castillo 2006, 2012) 

diagrams that are typically used to distinguish adakite and normal island arc rocks 

(andesite, dacite and rhyolite, ADR). In (a) and (b), red circles are our data for the 

Qingchengshan (QCS) pluton in this study, and grey circles are the literature data (Chen 

et al. 2008). In (c) and (d), symbols are the samples from the Tongwei (TW) area 

(CCC12-01, ABYC12-01, JPC12-02, respectively). All of the data altogether can be 

explained by the fractional crystallization. Line 1 (garnet fractionation only), and line 

2 (amphibole fractionation only) are the same in (a), (b), (c) and (d). Line 3 in (a) and 

(b): fractionation by the assemblage of 20% amphibole (Amp) + 70% plagioclase (Pl) 

+ 5% garnet (Grt) for the QCS pluton. Line 4 in (c) and (d): fractionation by the 

assemblage of 55% amphibole + 35% plagioclase + 5% garnet for the Tongwei 

granitoids. Line 3 and Line 4 explain the data best for the Qingchengshan pluton and 

Tongwei granitoids, respectively. 

 

Fig. 11 Plots of (a) εNd(t) vs. 87Sr/86Sri, (b) εHf(t) vs. εNd(t) for the Qingchengshan (QCS) 

pluton and Tongwei (TW) granitoids (~230 Ma sample not included), showing that they 

all have distinguishable isotope compositions from LFB (Lachalan Fold Belt) S-type 

granites and Himalayan leucogranites, and plot along an apparent mixing trend between 

the North Qilian Orogenic Belt (NQOB) MORB (mid-ocean ridge basalt) and terrestrial 

sediments (e.g., the Shaliuhe Gneisses). Sr and Nd isotope for the NQOB MORB are 

data on pillow basalts in the ophilite suites including Yushigou, Jiugequan, Laohushan 

and Dachadaban (Hou et al. 2006a, b) (we choose the arithmetic average for Sr and Nd 

as the end-member respectively, Sr: 150 ~ 300 ppm, 87Sr/86Sr: 0.706115, Nd: 2 ~ 8 ppm, 
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143Nd/144Nd: 0.512829, Hf: 2 ppm). Hf isotope for pillow basalts in the NQOB are 

inferred from Nd isotope data following the equation (εHf = 1.59 εNd + 1.28) by Chauvel 

et al. (2008). Sr, Nd and Hf isotope data for the Shaliuhe Gneisses are from Chen et al. 

(2007a, b) (Sr: 50 ~ 100 ppm, 87Sr/86Sr: 0.858204, Nd: 33 ppm, 143Nd/144Nd: 0.512148, 

Hf: 5 ppm, Hf isotope are from the in-situ data zircon of Shaliuhe Gneisses, 176Hf/177Hf: 

0.282180, arithmetic average respectively). Besides, the Sr and Nd isotope data for the 

Himalayan Leucogranites are from Zhang et al. (2005a), Liao et al. (2006), Zeng et al. 

(2011), and Guo and Wilson. (2012). The Lachlan Fold Belt (LFB) I- and S-type 

granites are from O’Neil and Chappell (1977), McCulloch and Chappell (1982), 

Wyborn and Chappell (1983), Gray (1990), Chappell et al. (1991), McCulloch and 

Woodhead (1993), and Savage et al. (2012). 

 

Table Captions 

Table 1. Zircon LA-ICP-MS U-Pb isotopic data of the Qingchengshan (QCS) pluton 

(QCS12-07, QCS12-10) and Tongwei (TW) granitoids (ABYC12-01, JPC12-02). 

 

Table 2. Whole-rock major and trace element data of the Qingchengshan (QCS) pluton 

and Tongwei (TW) granitoids. 

 

Table 3. Data of whole-rock Sr-Nd-Hf isotope of the Qingchengshan (QCS) pluton and 

Tongwei (TW) granitoids. 
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Fig. 6
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Fig. 7
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Fig. 9
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Fig. 10
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Fig. 11
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Table 1: Zircon LA-ICP-MS U-Pb isotopic data of the Qingchengshan (QCS) pluton (QCS12-07, QCS12-10) and Tongwei (TW) granitoids (ABYC12-01, JPC12-02)

QCS12-07

1 345 452 0.76 0.0552 0.0027 0.5134 0.0238 0.0675 0.0010 419 111 421 16 421 6

2 297 606 0.49 0.0545 0.0010 0.5067 0.0096 0.0674 0.0009 393 21 416 6 420 5

3 112 247 0.45 0.0545 0.0015 0.5058 0.0137 0.0673 0.0010 393 36 416 9 420 6

4 110 624 0.18 0.0556 0.0010 0.5145 0.0101 0.0671 0.0009 438 22 421 7 418 5

5 130 272 0.48 0.0558 0.0013 0.5176 0.0126 0.0673 0.0010 445 30 424 8 420 6

6 148 260 0.57 0.0553 0.0015 0.5133 0.0145 0.0673 0.0010 424 38 421 10 420 6

7 124 283 0.44 0.0574 0.0015 0.5342 0.0139 0.0675 0.0010 507 33 435 9 421 6

8 125 361 0.35 0.0552 0.0012 0.5140 0.0115 0.0675 0.0009 422 26 421 8 421 6

9 138 436 0.32 0.0555 0.0012 0.5141 0.0114 0.0672 0.0009 430 26 421 8 419 6

10 332 821 0.40 0.0546 0.0009 0.5071 0.0092 0.0673 0.0009 397 19 416 6 420 5

11 347 540 0.64 0.0551 0.0011 0.5123 0.0110 0.0674 0.0009 416 25 420 7 421 6

12 82.2 168 0.49 0.0561 0.0020 0.5219 0.0183 0.0674 0.0010 458 51 426 12 421 6

13 110 415 0.26 0.0558 0.0012 0.5193 0.0115 0.0675 0.0009 446 26 425 8 421 6

14 126 229 0.55 0.0562 0.0015 0.5217 0.0143 0.0673 0.0010 460 36 426 10 420 6

15 159 340 0.47 0.0541 0.0011 0.5015 0.0108 0.0673 0.0009 374 25 413 7 420 6

16 208 284 0.73 0.0553 0.0013 0.5134 0.0127 0.0674 0.0010 422 31 421 9 420 6

17 114 581 0.20 0.0556 0.0011 0.5165 0.0106 0.0674 0.0009 436 23 423 7 420 6

18 106 178 0.60 0.0558 0.0018 0.5199 0.0166 0.0676 0.0010 445 44 425 11 421 6

19 166 252 0.66 0.0553 0.0015 0.5136 0.0145 0.0673 0.0010 425 37 421 10 420 6

20 139 314 0.44 0.0552 0.0021 0.5136 0.0194 0.0674 0.0011 422 55 421 13 421 7

21 270 351 0.77 0.0548 0.0012 0.5110 0.0118 0.0676 0.0010 406 27 419 8 422 6

22 217 380 0.57 0.0547 0.0012 0.5069 0.0119 0.0672 0.0010 400 28 416 8 419 6

QCS12-10

1 161 265 0.61 0.0552 0.0015 0.5251 0.0147 0.0690 0.0010 420 36 429 10 430 6

2 168 314 0.53 0.0565 0.0028 0.5329 0.0251 0.0684 0.0011 472 113 434 17 427 6

3 162 284 0.57 0.0555 0.0014 0.5286 0.0141 0.0691 0.0010 431 34 431 9 431 6

4 126 221 0.57 0.0553 0.0019 0.5273 0.0181 0.0692 0.0011 424 49 430 12 431 6

5 196 369 0.53 0.0556 0.0019 0.5265 0.0179 0.0687 0.0011 436 48 429 12 428 7

6 107 193 0.56 0.0554 0.0020 0.5289 0.0188 0.0692 0.0012 429 50 431 13 431 7

7 146 356 0.41 0.0560 0.0016 0.5339 0.0155 0.0691 0.0010 454 38 434 10 431 6

8 218 282 0.77 0.0556 0.0019 0.5298 0.0178 0.0691 0.0011 437 46 432 12 431 7

9 178 284 0.63 0.0555 0.0016 0.5272 0.0158 0.0689 0.0011 432 40 430 10 430 6

ABYC12-01

1 156 190 0.82 0.0562 0.0016 0.5482 0.0156 0.0707 0.0011 460 37 444 10 441 6

2 244 334 0.73 0.0565 0.0014 0.5508 0.0141 0.0707 0.0010 471 31 446 9 441 6

3 200 296 0.68 0.0557 0.0014 0.5419 0.0145 0.0706 0.0010 440 34 440 10 440 6

4 278 215 1.29 0.0563 0.0017 0.5476 0.0170 0.0705 0.0011 465 42 443 11 439 7

5 278 334 0.83 0.0555 0.0014 0.5401 0.0139 0.0705 0.0010 434 32 439 9 439 6

6 71.8 109 0.66 0.0555 0.0026 0.5416 0.0254 0.0708 0.0012 432 75 439 17 441 7

7 231 227 1.02 0.0556 0.0016 0.5416 0.0158 0.0707 0.0011 435 38 439 10 440 7

8 303 255 1.19 0.0550 0.0016 0.5352 0.0155 0.0706 0.0011 411 38 435 10 440 6

9 243 422 0.58 0.0554 0.0012 0.5412 0.0126 0.0708 0.0010 430 27 439 8 441 6

10 198 285 0.70 0.0563 0.0014 0.5475 0.0140 0.0705 0.0011 464 31 443 9 439 6

11 234 273 0.86 0.0557 0.0016 0.5436 0.0156 0.0708 0.0011 440 37 441 10 441 6

12 219 344 0.64 0.0554 0.0013 0.5391 0.0130 0.0705 0.0010 430 29 438 9 439 6

13 126 127 1.00 0.0565 0.0022 0.5519 0.0214 0.0709 0.0011 471 57 446 14 441 7

14 828 726 1.14 0.0587 0.0012 0.5696 0.0121 0.0703 0.0010 557 23 458 8 438 6

15 132 147 0.90 0.0557 0.0020 0.5438 0.0198 0.0708 0.0011 441 53 441 13 441 7

16 119 234 0.51 0.0584 0.0016 0.5843 0.0161 0.0725 0.0011 546 34 467 10 451 7

17 125 297 0.42 0.0553 0.0012 0.5392 0.0124 0.0707 0.0010 424 27 438 8 440 6

18 313 480 0.65 0.0564 0.0011 0.5495 0.0116 0.0707 0.0010 468 23 445 8 440 6

19 547 658 0.83 0.0552 0.0011 0.5385 0.0112 0.0707 0.0010 422 23 437 7 440 6

20 385 493 0.78 0.0553 0.0011 0.5407 0.0117 0.0709 0.0010 426 25 439 8 441 6

21 192 185 1.04 0.0555 0.0016 0.5411 0.0158 0.0708 0.0011 430 38 439 10 441 7

22 448 271 1.65 0.0600 0.0015 0.5827 0.0147 0.0705 0.0011 602 30 466 9 439 6

23 64.5 115 0.56 0.0554 0.0022 0.5413 0.0215 0.0708 0.0011 430 61 439 14 441 7

24 84.0 136 0.62 0.0537 0.0020 0.5249 0.0197 0.0709 0.0011 359 56 428 13 441 7

JPC12-02

1 111 281 0.40 0.0503 0.0020 0.2528 0.0099 0.0364 0.0006 211 61 229 8 231 4

2 68.6 124 0.55 0.0513 0.0031 0.2576 0.0153 0.0364 0.0006 254 106 233 12 231 4

3 328 239 1.37 0.0509 0.0017 0.2561 0.0087 0.0365 0.0006 235 50 232 7 231 3

4 310 498 0.62 0.0507 0.0015 0.2542 0.0075 0.0363 0.0006 229 41 230 6 230 3

5 380 256 1.49 0.0508 0.0023 0.2551 0.0116 0.0365 0.0006 230 75 231 9 231 4

6 154 226 0.68 0.0511 0.0024 0.2567 0.0118 0.0364 0.0006 245 76 232 10 231 4

7 444 261 1.70 0.0508 0.0019 0.2554 0.0096 0.0365 0.0006 232 59 231 8 231 3

8 286 185 1.55 0.0504 0.0028 0.2517 0.0138 0.0362 0.0006 214 96 228 11 229 4

9 327 295 1.11 0.0507 0.0022 0.2518 0.0107 0.0360 0.0006 228 70 228 9 228 3

10 97.3 352 0.28 0.0510 0.0013 0.2561 0.0066 0.0365 0.0005 239 33 232 5 231 3

11 279 207 1.35 0.0509 0.0022 0.2563 0.0111 0.0366 0.0006 234 71 232 9 231 4

12 178 311 0.57 0.0507 0.0016 0.2548 0.0081 0.0364 0.0005 228 46 230 7 231 3

13 313 541 0.58 0.0528 0.0031 0.2560 0.0142 0.0351 0.0006 322 134 231 11 223 3

14 374 930 0.40 0.0508 0.0011 0.2558 0.0058 0.0365 0.0005 230 28 231 5 231 3

15 575 303 1.90 0.0506 0.0019 0.2547 0.0095 0.0365 0.0006 224 57 230 8 231 4

16 103 80 1.28 0.0506 0.0046 0.2516 0.0224 0.0361 0.0008 221 159 228 18 229 5

17 123 118 1.04 0.0512 0.0038 0.2514 0.0187 0.0356 0.0007 252 135 228 15 225 4

18 568 535 1.06 0.0527 0.0014 0.2651 0.0074 0.0365 0.0005 316 38 239 6 231 3

19 74.5 240 0.31 0.0511 0.0023 0.2565 0.0116 0.0364 0.0006 244 73 232 9 231 4

Age (Ma)

207
Pb/

206
Pb ±1σ 207

Pb/
235

U ±1σ 206
Pb/

238
U ±1σ206

Pb/
238

U
207

Pb/
206

Pb ±1σ 207
Pb/

235
U ±1σ

Grain-Spot Th (ppm) U (ppm) Th/U
Ratios

±1σ
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Table 2: Whole-rock major and trace element data of the Qingchenshan (QCS) pluton and Tongwei (TW) granitoids

QCS pluton TW granitoids

QCS12-03 QCS12-06 QCS12-08 QCS12-10 QCS12-11 JPC12-02 CCC12-01 ABYC12-01 HTC12-01

SiO2 73.8 70.6 72.5 70.8 75.7 71.8 71.6 70.8 74.7

TiO2 0.14 0.26 0.25 0.35 0.07 0.31 0.26 0.32 0.21

Al2O3 13.8 15.4 14.9 14.7 14.3 14.7 14.6 14.9 13.0

TFe2O3 
a 1.19 2.02 2.02 2.46 0.49 2.04 1.73 2.21 1.25

MnO 0.06 0.04 0.03 0.03 0.01 0.03 0.03 0.03 0.01

MgO 0.24 0.62 0.73 0.76 0.16 0.56 0.61 0.74 0.29

CaO 1.64 2.91 2.36 1.92 1.73 1.88 1.71 3.02 0.46

Na2O 3.38 4.31 3.76 3.06 3.37 3.87 3.97 4.19 3.05

K2O 4.42 3.01 2.62 4.54 3.83 4.30 4.29 2.93 5.36

P2O5 0.05 0.11 0.10 0.07 0.02 0.09 0.08 0.08 0.09

LOI 0.58 0.60 0.63 0.56 0.42 0.60 0.59 0.56 0.79

Total 99.2 99.9 99.9 99.2 100.0 100.2 99.5 99.8 99.1

A/NK 
b 1.33 1.49 1.65 1.48 1.47 1.33 1.31 1.49 1.20

A/NKC 
c 1.03 0.99 1.12 1.10 1.11 1.01 1.02 0.96 1.11

K2O/Na2O 1.31 0.70 0.70 1.48 1.35 1.11 1.08 0.70 1.76

Li 37.5 27.2 50.1 26.9 12.2 35.8 50.1 21.2 10.7

Sc 3.7 3.4 4.4 4.0 1.3 3.1 2.9 2.9 5.4

V 7.5 17.0 23.1 23.2 4.5 22.0 24.7 36.1 20.3

Cr 3.3 3.8 3.8 9.7 22.7 9.4 9.9 8.2 8.2

Co 0.6 2.4 2.9 3.6 0.8 2.5 2.6 3.8 1.1

Ni 0.8 1.7 2.8 4.5 10.8 4.6 5.1 4.4 1.7

Cu 2.3 1.1 5.5 1.6 0.8 5.3 3.6 2.2 57.0

Zn 29.0 35.7 49.7 46.8 14.2 40.1 31.5 42.1 14.2

Ga 18.1 18.4 19.7 18.9 16.5 19.8 20.6 21.8 18.9

Rb 181 105 162 116 129 165 210 105 344

Sr 101 337 342 379 317 534 599 907 63

Y 15.2 6.4 10.8 8.9 8.7 6.6 6.5 5.2 47.4

Zr 124 126 381 156 49 200 135 171 128

Nb 14.7 11.8 16.4 15.1 5.1 10.4 9.7 4.4 39.3

Cs 2.9 3.6 5.0 4.5 1.7 3.0 12.5 1.7 10.9

Ba 545 632 1555 739 758 1452 1209 1879 206

La 37.5 27.9 103.8 31.5 21.9 56.3 33.1 50.7 29.4

Ce 74.5 50.7 191.8 54.0 41.2 97.6 59.7 93.6 61.8

Pr 7.41 4.52 17.89 5.21 4.05 8.97 6.08 8.28 7.01

Nd 24.8 14.7 58.8 17.1 13.7 28.6 20.6 26.2 26.1

Sm 4.42 2.50 8.19 2.81 2.44 3.90 3.12 3.32 6.19

Eu 0.53 0.66 1.06 0.65 0.73 0.99 0.80 0.95 0.44

Gd 3.54 2.02 5.63 2.39 2.07 2.75 2.24 2.15 6.13

Tb 0.47 0.25 0.54 0.33 0.29 0.29 0.25 0.21 1.06

Dy 2.58 1.23 2.30 1.73 1.61 1.32 1.19 0.97 6.92

Ho 0.53 0.21 0.39 0.31 0.31 0.23 0.21 0.18 1.49

Er 1.71 0.58 1.06 0.84 0.82 0.63 0.60 0.51 4.79

Tm 0.28 0.08 0.13 0.11 0.10 0.08 0.08 0.07 0.74

Yb 1.97 0.48 0.77 0.65 0.61 0.50 0.53 0.50 5.26

Lu 0.29 0.07 0.12 0.09 0.09 0.08 0.08 0.08 0.78

Hf 3.24 3.22 8.78 3.74 1.39 4.52 3.43 3.94 3.89

Ta 0.93 0.96 0.89 0.98 0.34 0.66 0.60 0.27 2.95

Pb 26.9 30.1 32.7 25.9 32.8 31.2 38.4 19.4 41.8

Th 19.9 14.8 33.1 11.9 9.8 19.6 17.7 14.9 38.9

U 2.22 1.66 2.60 1.79 1.22 2.14 1.84 1.39 4.49

Eu/Eu* 
d 0.40 0.87 0.45 0.75 0.96 0.88 0.88 1.02 0.22

Sr/Sr* 
d 0.14 0.79 0.20 0.77 0.82 0.64 1.03 1.18 0.09

(La/Yb)N 
e 13.6 42.0 96.3 35.0 25.8 80.7 44.7 73.2 4.0

(Dy/Yb)N 
e 0.88 1.72 1.99 1.80 1.77 1.77 1.50 1.31 0.88

a
 Fe2O3 is total Fe expressed as Fe

3+
.

b
 A/NK = molar Al2O3/(Na2O+K2O).

c
 A/NKC = molar Al2O3/(Na2O+K2O+CaO).

d
 Eu/Eu* = 2×EuN/(SmN+GdN), Sr/Sr* = 2×SrN/(PrN+NdN).

e
 Subscript N stands for normalized values against chondrite.

Sample
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 Table 3: Data of whole-rock Sr-Nd-Hf isotope of the Qingchengshan (QCS) pluton and Tongwei (TW) granotids

Sample
Age

(Ma)

Rb

(ppm)

Sr

(ppm)
87

Rb/
86

Sr
87

Sr/
86

Sr(2SD)
87

Sr/
86

Sri

Sm

(ppm)

Nd

(ppm)
147

Sm/
144

Nd
143

Nd/
144

Nd(2SD) εNd(t)
Lu

(ppm)

Hf

(ppm)
176

Lu/
177

Hf
176

Hf/
177

Hf(2SD) εHf(t)

QCS12-03 430 181 101 5.056 0.738910(05) 0.707947 4.42 24.8 0.108 0.512152(07) -4.6 0.29 3.24 0.013 0.282580(06) -0.7

QCS12-06 430 105 337 0.881 0.712575(05) 0.707181 2.50 14.7 0.103 0.512268(08) -2.1 0.07 3.22 0.003 0.282632(03) 3.9

QCS12-08 430 162 342 1.336 0.711959(05) 0.703777 8.19 58.8 0.084 0.512256(09) -1.3 0.12 8.78 0.002 0.282625(06) 4.0

QCS12-10 430 116 379 0.868 0.715322(05) 0.710003 2.81 17.1 0.099 0.512120(10) -4.8 0.09 3.74 0.003 0.282559(03) 1.2

QCS12-11 430 129 317 1.152 0.714714(06) 0.707656 2.44 13.7 0.108 0.512207(08) -3.5 0.08 1.39 0.009 0.282612(05) 1.6

JPC12-02 230 165 534 0.873 0.710181(06) 0.707325 3.90 28.6 0.082 0.512150(10) -6.2 0.08 4.52 0.002 0.282509(07) -4.5

CCC12-01 440 210 599 0.989 0.709842(06) 0.703785 3.12 20.6 0.091 0.512235(10) -2.1 0.08 3.43 0.003 0.282586(07) 2.2

ABYC12-01 440 105 907 0.326 0.707258(06) 0.705258 3.32 26.2 0.077 0.512139(08) -3.1 0.08 3.94 0.003 0.282573(05) 1.9

HTC12-01 440 344 63.3 15.363 0.785140(05) 0.691048 6.19 26.1 0.143 0.512237(10) -4.9 0.78 3.88 0.029 0.282679(08) -2.0
87

Sr/
86

Sri = (
87

Sr/
86

Sr)sample − (
87

Rb/
86

Sr)sample ∗ (e
λt

 − 1), λ(
87

Rb) = 1.42 × 10
-11

 yr
-1

;

εNd(t) = [(
143

Nd/
144

Nd)sample(t) / (
143

Nd/
144

Nd)CHUR(t) − 1] ∗ 10000, where (
143

Nd/
144

Nd)CHUR(t) = (
143

Nd/
144

Nd)CHUR(present) − (
147

Sm/
144

Nd)CHUR(present) ∗ (e
λt

 − 1),

λ(
147

Sm) = 6.54 × 10
−12

 yr
−1

, The 
147

Sm/
144

Nd and 
143

Nd/
144

Nd ratios at the present day are 0.1967 and 0.512638 for chondrite, respectively. t = crystallization age of zircon;

εHf(t) = [(
176

Hf/
177

Hf)sample(t) / (
176

Hf/
177

Hf)CHUR(t) − 1] ∗ 10000, where (
176

Hf/
177

Hf)CHUR(t) = (
176

Hf/
177

Hf)CHUR(present) − (
176

Lu/
177

Hf)CHUR(present) ∗ (e
λt

 − 1),

λ(
176

Lu) = 1.93 × 10
−11

 yr
−1

, The 
176

Lu/
177

Hf and 
176

Hf/
177

Hf ratios at the present day are 0.0332 and 0.282772 for chondrite, respectively. t = crystallization age of zircon.

QCS pluton

TW granitoids
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