48 research outputs found

    Previous Radiotherapy Increases the Efficacy of IL-2 in Malignant Pleural Effusion: Potential Evidence of a Radio-Memory Effect?

    Get PDF
    Preclinical and clinical studies have shown that prior receipt of radiotherapy enhances antitumor immune responses, a phenomenon we call the “radio-memory effect.” However, all of the evidence regarding this effect to date comes from work with PD1/PDL1 inhibitors. Here we explored whether this effect also occurs with other forms of immune therapy, specifically interleukin-2 (IL-2). We retrospectively assessed outcomes in patients with malignant pleural effusion (MPE) who had previously received radiotherapy for non-small-cell lung cancer (NSCLC) within 18 months before the intrapleural infusion of IL-2 or cisplatin. Radiotherapy sites included lungs, thoracic lymph nodes, and intracranial. All patients received intrapleural infusion of IL-2 or cisplatin, and most had had several cycles of standard chemotherapy for NSCLC. We identified 3,747 patients with MPE (median age 64 years [range 29–88)) treated at one of several institutions from August 2009 through February 2015; 642 patients had been treated with IL-2 and 1102 with cisplatin and had survived for at least 6 months afterward. Among those who received IL-2, 288 had no radiotherapy, 324 had extracranial (i.e., thoracic) radiotherapy, and 36 had intracranial radiotherapy. The median follow-up time for surviving patients was 38 months. Patients who had received extracranial radiotherapy followed by IL-2 had significantly longer PFS than patients who had not received extracranial radiotherapy (i.e., either no radiotherapy or intracranial radiotherapy). Patients who had received intracranial or extracranial radiotherapy followed by IL-2 had significantly longer OS than did other patients. No survival advantage was noted for prior radiotherapy among patients who received intrapleural cisplatin. We speculate that previous radiotherapy could enhance the efficacy of subsequent intrapleural infusion of IL-2, a “radio-memory” effect that could be beneficial in future studies

    Investigation of the Size Effects on the Elongation of Ti-2.5Al-1.5Mn Foils with Digital Image Correlation Method

    No full text
    The increasing demand for parts with a large specific surface area such as fuel panels has put forward higher requirements for the plasticity of foils. However, the deformation characteristics of foils is hard to be illustrated in-depth due to their very short deformation process. In this paper, the digital image correlation method was applied to investigate the influence of size effect on the elongation of Ti-2.5Al-1.5Mn foils. The results showed that the elongation of Ti-2.5Al-1.5Mn foils increased with the decrease in the ratio of thickness-to-grain diameter (t/d value). Then, the macro deformation distribution of foils was analyzed, combined with their microstructure characteristics, and it was found that the increasing influence of individual grain heterogeneity leads to the earlier formation of a concentrated deformation zone, which changes the deformation mode of foils. The concentrated deformation increases with the decrease in t/d value, thus dominating the trend of the foil elongation. Furthermore, the homogeneous deformation and concentrated deformation can be divided into two different zones by a certain critical t/d value. These results provide a basis for understanding and further exploration of the deformation behavior of titanium foils

    Chin. J. Catal.

    No full text
    Perovskite nanocomposite catalysts LaXCoO3 (X = Mg, Ca, Sr, or Ce; n(La):n(X) = 3:2) have been prepared by a citric acid-complexing method and used for steam reforming of ethanol (SRE), leading to hydrogen generation. The samples were characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, N-2 adsorption-desorption, and H-2 temperature-programmed reduction. The effects of elemental substitution in the LaCoO3 perovskite were studied, and the catalytic performance and primary stability of the hydrogen production from SRE were investigated. In the highly substituted samples, only the Ce-doped sample was isolated as the pure perovskite phase. The presence of a Co3O4 phase in the Ca-doped or Sr-doped samples was beneficial for the reduction of the active Co component, while Sr-doped or Ce-doped samples showed good activity and stability. The sample incorporating Sr demonstrated better catalytic performance than those of other samples. (C) 2014, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.Perovskite nanocomposite catalysts LaXCoO3 (X = Mg, Ca, Sr, or Ce; n(La):n(X) = 3:2) have been prepared by a citric acid-complexing method and used for steam reforming of ethanol (SRE), leading to hydrogen generation. The samples were characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, N-2 adsorption-desorption, and H-2 temperature-programmed reduction. The effects of elemental substitution in the LaCoO3 perovskite were studied, and the catalytic performance and primary stability of the hydrogen production from SRE were investigated. In the highly substituted samples, only the Ce-doped sample was isolated as the pure perovskite phase. The presence of a Co3O4 phase in the Ca-doped or Sr-doped samples was beneficial for the reduction of the active Co component, while Sr-doped or Ce-doped samples showed good activity and stability. The sample incorporating Sr demonstrated better catalytic performance than those of other samples. (C) 2014, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved

    Research on the Hydrophobicity of Square Column Structures on Monocrystalline Silicon Fabricated Using Micro-Machining

    No full text
    The theoretical prediction models of contact angle were constructed by considering the interface free energy. Then, the square column structure on monocrystalline silicon was fabricated using micro-milling. The rationality of prediction models was validated by regulating the parameters of the square column. It should be mentioned that the whole construction process was facile and efficient. After processing, the hydrophobicity of monocrystalline silicon with the square column structure was improved. The static contact angle of the processed monocrystalline silicon reached 165.8° when the side length of the square column was 60 μm. In addition, the correctness of the prediction models was verified from the perspective of molecular dynamics. The prediction models of contact angle were of great value for the practical application

    Bradycardia-Induced Syncope with a Twist

    Get PDF
    We use tensile–shear tests to investigate the failure modes of Ti–1Al–1Mn microscale resistance spot welds and to determine how the failure mode affects the microstructure, microhardness profile, and mechanical performance. Two different failure modes were revealed: interfacial failure mode and pullout failure mode. The welds that fail by pullout failure mode have much better mechanical properties than those that fail by interfacial failure mode. The results show that weld nugget size is also a principal factor that determines the failure mode of microscale resistance spot welds. A minimum weld nugget size exists above which all specimens fail by pullout failure mode. However, the critical weld nugget sizes calculated using the existing recommendations are not consistent with the present experimental results. We propose instead a modified model based on distortion energy theory to ensure pullout failure. Calculating the critical weld nugget size using this model provides results that are consistent with the experimental data to high accuracy

    Polybrominated Diphenyl Ethers and Heavy Metals in a Regulated E-Waste Recycling Site, Eastern China: Implications for Risk Management

    No full text
    Serious pollution of multiple chemicals in irregulated e-waste recycling sites (IR-sites) were extensively investigated. However, little is known about the pollution in regulated sites. This study investigated the occurrence of 21 polybrominated diphenyl ethers (PBDEs) and 10 metals in a regulated site, in Eastern China. The concentrations of PBDEs and Cd, Cu, Pb, Sb, and Zn in soils and sediments were 1–4 and 1–3 orders of magnitude lower than those reported in the IR-sites, respectively. However, these were generally comparable to those in the urban and industrial areas. In general, a moderate pollution of PBDEs and metals was present in the vegetables in this area. A health risk assessment model was used to calculate human exposure to metals in soils. The summed non-carcinogenic risks of metals and PBDEs in the investigated soils were 1.59–3.27 and 0.25–0.51 for children and adults, respectively. Arsenic contributed to 47% of the total risks and As risks in 71.4% of the total soil samples exceeded the acceptable level. These results suggested that the pollution from e-waste recycling could be substantially decreased by the regulated activities, relative to poorly controlled operations, but arsenic pollution from the regulated cycling should be further controlled

    Analytical Model for Springback Prediction of CuZn20 Foil Considering Size Effects: Weakening versus Strengthening

    No full text
    The prediction of springback angle for ultra-thin metallic sheets becomes extremely difficult with the existence of size effects. In this study, size effects on the springback behavior of CuZn20 foils are investigated by experiments and analytical methods. The experimental results reveal that the springback angle first decreases gradually and then increases markedly with the decrease of foil thickness, which cannot be analyzed by current theoretical models. Then, an analytical model based on the Taylor-based nonlocal theory of plasticity is developed, in which the drastic increases of both the proportion of surface grains and the strain gradient are taken into account. Moreover, the influence of strain gradient is modified by the grain-boundary blocking factor. The calculation results show that the springback angle of foils is determined by the intrinsic competition between the decrement angle caused by surface grains and the increment angle caused by the strain gradient. Besides, the relative error of predicted springback angle by the model is less than 15%, which means that the developed model is very useful for improving the quality of micro sheet parts with high accuracy of springback prediction

    Deformation Behavior of β Phase in a WE54 Magnesium Alloy

    No full text
    Second phases play a significant role in the development of high-performance magnesium alloys with rare earth elements. Here, in situ tensile tests combined with synchrotron radiation were carried out to investigate the deformation behavior of β phases in a WE (Mg–Y–Gd–Nd) alloy. By lattice strain analysis, it was found that micro load continuously transferred from the soft α-Mg matrix to the hard β phases during the whole plastic deformation, while this behavior was much more obvious at the beginning of deformation. Based on diffraction peak broadening, Williamson–Hall (W–H) plotting was used to study the microstrain of β phases. The results showed that the microstrain of β phases increased rapidly within 4% plastic strain and reached the maximum at plastic strain of ~6.5%. Since the β phases acted as hard phases, the microstrain was considered as a sign of the stress concentration near phase interfaces. It was also suggested that the effective release of local stress concentration at the β/α-Mg interface benefited the ductility of the WE alloy by the plastic deformation of β phases and phase interface sliding
    corecore