146 research outputs found

    Advanced optical modulation and fast reconfigurable en/decoding techniques for OCDMA application

    Get PDF
    With the explosive growth of bandwidth requirement in optical fiber communication networks, optical code division multiple access (OCDMA) has witnessed tremendous achievements as one of the promising technologies for optical access networks over the past decades. In an OCDMA system, optical code processing is one of the key techniques. Rapid optical code reconfiguration can improve flexibility and security of the OCDMA system. This thesis focuses on advanced optical modulations and en/decoding techniques for applications in fast reconfigurable OCDMA systems and secure optical communications. A novel time domain spectral phase encoding (SPE) scheme which can rapidly reconfigure the optical code and is compatible with conventional spectral domain phase en/decoding by using a pair of dispersive devices and a high speed phase modulator is proposed. Based on this scheme, a novel advanced modulation technique that can simultaneously generate both the optical code and the differential-phase-shift-keying (DPSK) data using a single phase modulator is experimentally demonstrated. A symmetric time domain spectral phase encoding and decoding (SPE/SPD) scheme using a similar setup for both the transmitter and receiver is further proposed, based on which a bit-by-bit optical code scrambling and DPSK data modulation technique for secure optical communications has been successfully demonstrated. By combining optical encoding and optical steganography, a novel approach for secure transmission of time domain spectral phase encoded on-off-keying (OOK)/DPSK-OCDMA signal over public wavelength-division multiplexing (WDM) network has also been proposed and demonstrated. To enable high speed operation of the time domain SPE/SPD scheme and enhance the system security, a rapid programmable, code-length variable bit-by-bit optical code shifting technique is proposed. Based on this technique, security improvements for OOK/DPSK OCDMA systems at data rates of 10Gb/s and 40Gb/s using reconfigurable optical codes of up to 1024-chip have been achieved. Finally, a novel tunable two-dimensional coherent optical en/decoder which can simultaneously perform wavelength hopping and spectral phase encoding based on coupled micro-ring resonator is proposed and theoretically investigated. The techniques included in this thesis could be potentially used for future fast reconfigurable and secure optical code based communication systems

    Boundary stabilization of quasilinear hyperbolic systems of balance laws: Exponential decay for small source terms

    Full text link
    We investigate the long-time behavior of solutions of quasilinear hyperbolic systems with transparent boundary conditions when small source terms are incorporated in the system. Even if the finite-time stability of the system is not preserved, it is shown here that an exponential convergence towards the steady state still holds with a decay rate which is proportional to the logarithm of the amplitude of the source term. The result is stated for a system with dynamical boundary conditions in order to deal with initial data that are free of any compatibility condition

    Superresolution of Hyperspectral Image Using Advanced Nonlocal Means Filter and Iterative Back Projection

    Get PDF
    We introduce an efficient superresolution algorithm based on advanced nonlocal means (NLM) filter and iterative back projection for hyperspectral image. The nonlocal means method achieves the to-be-interpolated pixel by the weighted average of all pixels within an image, and the unrelated neighborhoods are automatically eliminated by the trivial weights. However, spatial location distance is also an important issue to reconstruct the missing pixel. Therefore, we proposed an advanced NLM (ANLM) filter considering both neighborhood similarity and patch distance. In the conventional NLM method, the search region was the whole image, while the proposed ANLM utilizes the limited search to reduce the complexity. The iterative back projection (IBP) is a very famous method to deal with the image restoration. In the superresolution issue, IBP is able to recover the high-resolution image iteratively from the given low-resolution image which is blurred due to the noise by minimizing the reconstruction error, while, because the reconstruction error of IBP is back projection and isotropic, the conventional IBP suffers from jaggy and ringing artifacts. Introducing the ANLM method to improve the visual quality is necessary

    Simulation of CSSTs astrometric capability

    Full text link
    The China Space Station Telescope (CSST) will enter a low Earth orbit around 2024 and operate for 10 years, with seven of those years devoted to surveying the area of the median-to-high Galactic latitude and median-to-high Ecliptic latitude of the sky. To maximize the scientific output of CSST, it is important to optimize the survey schedule. We aim to evaluate the astrometric capability of CSST for a given survey schedule and to provide independent suggestions for the optimization of the survey strategy. For this purpose, we first construct the astrometric model and then conduct simulated observations based on the given survey schedule. The astrometric solution is obtained by analyzing the simulated observation data. And then we evaluate the astrometric capability of CSST by analyzing the properties of the astrometric solution. We find that the accuracy of parallax and proper motion of CSST is better than 1 mas( yr1) for the sources of 18-22 mag in g band, and about 1-10 mas( yr1) for the sources of 22-26 mag in g band, respectively. The results from real survey could be worse since the assumptions are optimistic and simple. We find that optimizing the survey schedule can improve the astrometric accuracy of CSST. In the future, we will improve the astrometric capability of CSST by continuously iterating and optimizing the survey schedule.Comment: 17 pages, 10 figure

    Propagation Characteristics of Oblique Incident Terahertz Wave in Nonuniform Dusty Plasma

    Get PDF
    Propagation characteristics of oblique incident terahertz wave from the nonuniform dusty plasma are studied using the propagation matrix method. Assuming that the electron density distribution of dusty plasma is parabolic model, variations of power reflection, transmission, and absorption coefficients with frequencies of the incident wave are calculated as the wave illuminates the nonuniform dusty plasma from different angles. The effects of incident angles, number density, and radius of the dust particles on propagation characteristics are discussed in detail. Numerical results show that the number density and radius of the dust particles have very little influences on reflection and transmission coefficients and have obvious effects on absorption coefficients. The terahertz wave has good penetrability in dusty plasma

    Reflection and transmission of Laguerre-Gaussian beams in a dielectric slab

    Get PDF
    Abstract This paper considers the reflection and transmission characteristics of a Laguerre-Gaussian (LG) beam in a dielectric slab. The fields of the reflected and transmitted beams are described based on plane-wave angular spectrum representation. Using the generalized Fresnel amplitude reflectance and transmittance, the reflected and transmitted fields in each region are expressed. With the Taylor series approximation of reflectance and transmittance, the analytical expressions of the total reflected and transmitted fields in the input and output regions are derived. The effects of the beam-waist radius and topological charge on the reflected and transmitted field intensities are simulated and discussed in detail. The centroid shifts of the reflected beam are also presented. It is concluded that the distortion of the intensity distribution including the size of the intensity contour, is influenced by the beam-waist radius and the topological charge of the incident beam. The total intensity of the slab, in particular for the case of the transmitted field, is found to be distinguishable from the case of the single interface

    Propagation Characteristics of Oblique Incident Terahertz Wave in Nonuniform Dusty Plasma

    Get PDF
    Propagation characteristics of oblique incident terahertz wave from the nonuniform dusty plasma are studied using the propagation matrix method. Assuming that the electron density distribution of dusty plasma is parabolic model, variations of power reflection, transmission, and absorption coefficients with frequencies of the incident wave are calculated as the wave illuminates the nonuniform dusty plasma from different angles. The effects of incident angles, number density, and radius of the dust particles on propagation characteristics are discussed in detail. Numerical results show that the number density and radius of the dust particles have very little influences on reflection and transmission coefficients and have obvious effects on absorption coefficients. The terahertz wave has good penetrability in dusty plasma

    Reflection,Transmission, and Absorption of Vortex Beams Propagation in an Inhomogeneous Magnetized Plasma Slab

    Get PDF
    Based on the angular spectrum expansion and the 4x4 transfer matrix method, an investigation into the reflection, transmission, and absorption of vortex beams in an inhomogeneous magnetized plasma slab is presented. The reflected and transmitted electric fields are expressed by the inverse Fourier transform of the product of the reflected and transmitted coefficients and the angular spectrum amplitude of the incident beam. The intensity profiles, as well as the distortion of OAM states in both the reflected and transmitted beams are simulated and discussed. Through this investigation it could be concluded that both the incident angle and the plasma parameters have significant impact on the magnitudes of reflected and transmitted intensities, and the distortion of OAM states. The effects of the magnetic field and the incident angle on the reflectance, transmittance, and absorptance of the power have also been reported
    • …
    corecore