188 research outputs found

    Harnessing Flexible and Reliable Demand Response Under Customer Uncertainties

    Full text link
    Demand response (DR) is a cost-effective and environmentally friendly approach for mitigating the uncertainties in renewable energy integration by taking advantage of the flexibility of customers' demands. However, existing DR programs suffer from either low participation due to strict commitment requirements or not being reliable in voluntary programs. In addition, the capacity planning for energy storage/reserves is traditionally done separately from the demand response program design, which incurs inefficiencies. Moreover, customers often face high uncertainties in their costs in providing demand response, which is not well studied in literature. This paper first models the problem of joint capacity planning and demand response program design by a stochastic optimization problem, which incorporates the uncertainties from renewable energy generation, customer power demands, as well as the customers' costs in providing DR. We propose online DR control policies based on the optimal structures of the offline solution. A distributed algorithm is then developed for implementing the control policies without efficiency loss. We further offer enhanced policy design by allowing flexibilities into the commitment level. We perform real world trace based numerical simulations. Results demonstrate that the proposed algorithms can achieve near optimal social costs, and significant social cost savings compared to baseline methods

    Incentivizing Reliable Demand Response with Customers' Uncertainties and Capacity Planning

    Full text link
    One of the major issues with the integration of renewable energy sources into the power grid is the increased uncertainty and variability that they bring. If this uncertainty is not sufficiently addressed, it will limit the further penetration of renewables into the grid and even result in blackouts. Compared to energy storage, Demand Response (DR) has advantages to provide reserves to the load serving entities (LSEs) in a cost-effective and environmentally friendly way. DR programs work by changing customers' loads when the power grid experiences a contingency such as a mismatch between supply and demand. Uncertainties from both the customer-side and LSE-side make designing algorithms for DR a major challenge. This paper makes the following main contributions: (i) We propose DR control policies based on the optimal structures of the offline solution. (ii) A distributed algorithm is developed for implementing the control policies without efficiency loss. (iii) We further offer an enhanced policy design by allowing flexibilities into the commitment level. (iv) We perform real world trace based numerical simulations which demonstrate that the proposed algorithms can achieve near optimal social cost. Details can be found in our extended version.Comment: arXiv admin note: substantial text overlap with arXiv:1704.0453

    Organic Field-Effect Transistor: Device Physics, Materials, and Process

    Get PDF
    Organic field-effect transistors have received much attention in the area of low cost, large area, flexible, and printable electronic devices. Lots of efforts have been devoted to achieve comparable device performance with high charge carrier mobility and good air stability. Meanwhile, in order to reduce the fabrication costs, simple fabrication conditions such as the printing techniques have been frequently used. Apart from device optimization, developing novel organic semiconductor materials and using thin-film alignment techniques are other ways to achieve high-performance devices and functional device applications. It is expected that by combining proper organic semiconductor materials and appropriate fabrication techniques, high-performance devices for various applications could be obtained. In this chapter, the organic field-effect transistor in terms of device physics, organic materials, device process, and various thin-film alignment techniques will be discussed

    Applications of Chemical Kinetics in Heterogeneous Catalysis

    Get PDF
    Chemical kinetics is a key subdiscipline of physical chemistry that studies the reaction rate in every elemental step and corresponding catalytic mechanism. It mainly concludes molecular reaction dynamics, catalytic dynamics, elemental reaction dynamics, macrodynamics, and microdynamics. Such a research field has wide applications in heterogeneous catalysis. Based on the Arrhenius plot fitted by the catalytic conversions below 15% without the mass transfer effect and heat transfer effect, the apparent activation energy echoing with the intrinsically catalytic sites and the pre-exponential factor echoing with the relative number of active sites can be, respectively, derived from the slope and intercept of the Arrhenius plots, which can be used to compare the intrinsically catalytic activity of different catalysts and the relative amount of active sites. Reaction orders of both reactants and products are derived from the reaction rate equation and also fitted by the catalytic conversions below 15% without the mass transfer effect and heat transfer effect. According to the acquired reaction orders, the reaction mechanism can be proposed and even defined in some simple reactions. Therefore, investigations of chemical kinetics are of extreme importance and meaning in heterogeneous catalysis

    Efficient Inverted ITO-Free Organic Solar Cells Based on Transparent Silver Electrode with Aqueous Solution-Processed ZnO Interlayer

    Get PDF
    Efficient inverted organic solar cells (OSCs) with the MoO3 (2 nm)/Ag (12 nm) transparent cathode and an aqueous solution ZnO electron extraction layer processed at low temperature are investigated in this work. The blend of low bandgap poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7) and [6,6]-phenyl-C71-butyric acid methylester (PC71BM) is employed as the photoactive layer here. A power conversion efficiency (PCE) of 5.55% is achieved for such indium tin oxide- (ITO-) free OSCs under AM 1.5G simulated illumination, comparable to that of ITO-based reference OSCs (PCE of 6.11%). It is found that this ZnO interlayer not only slightly enhances the transparency of MoO3/Ag cathode but also obtains a lower root-mean-square (RMS) roughness on the MoO3/Ag surface. Meanwhile, ITO-free OSCs also show a good stability. The PCE of the devices still remains above 85% of the original values after 30 days, which is slightly superior to ITO-based reference OSCs where the 16% degradation in PCE is observed after 30 days. It may be instructive for further research of OSCs based on metal thin film electrodes
    • …
    corecore