2,496 research outputs found

    Charge pumping in monolayer graphene driven by a series of time-periodic potentials

    Full text link
    We applied the Floquet scattering-matrix formalism to studying the electronic transport properties in a mesoscopic Dirac system. Using the method, we investigate theoretically quantum pumping driven by a series of time-periodic potentials in graphene monolayer both in the adiabatic and non-adiabatic regimes. Our numerical results demonstrate that adding harmonic modulated potentials can break the time reversal symmetry when no voltage bias is applied to the graphene monolayer. Thus, when the system is pumped with proper dynamic parameters, these scatterers can produce a nonzero dc pumped current. We also find that the transmission is anisotropic as the incident angle is changed.Comment: 8 pages, 6 figure

    Quantum Resonant Beats and Revivals in the Morse Oscillators and Rotors

    Get PDF
    Analytical eigenfunctions and eigenvalues for the Morse oscillator were applied to investigate the quantum resonant beats and revivals of wave packet propagation. A concise way for exact prediction of the complete revival period of the Morse oscillator was given for the first time. It was suggested that any complete period was made of integer numbers of the minimum or fundamental period. Within the fundamental period, the anharmonicity of this oscillator appeared to cause interesting space-time phenomena that include relatively simple Farey-sum revival structures. In addition, a simple sum of two Morse oscillators led to a double-Morse well whose geometric symmetry provided analytical eigenfunctions and eigenvalues for certain low-lying energy levels. The quantum tunneling between the double-Morse well significantly affected the resonant beats and revivals local to each well, and gave rise to interesting tsunami-like waves in the middle of the double well. Furthermore, quantum rotor wave functions based upon Wigner-D matrix were applied to investigate the quantum resonant beats and revivals that occur in experimentally accessible spin systems. Interesting physical effects in quantum rotors between half-integer spin and integer spin systems were observed to show effects of symmetry. Essentially, the quantum revivals in these quantum systems exhibited number-information aspects of surprisingly simple Farey-sum and Ford circles geometry. Such quantum dynamics will provide a physical insight to further develop matter wave packet technology, and might have applications for quantum information processing and quantum computing

    Numerical Simulation of Thermal Management of Lithium Battery Based on Air Cooled Heat Dissipation

    Get PDF
    In recent years, due to the rapid increase in the number of vehicles in the world, the traditional vehicles using gasoline or diesel as energy have led to serious air pollution and energy depletion. It is urgent to develop practical clean energy vehicles. The performance of electric vehicle depends on the power battery pack. The working temperature of the battery pack has a great impact on the performance of the battery, so it is necessary to carry out thermal management on the battery pack. Taking a lithium-ion battery as the research object, the temperature field of the battery pack in the charge and discharge state is simulated and analyzed by using CFD simulation software in the way of air cooled heat dissipation, so as to understand the influencing factors of uneven temperature field. At the same time, the development trend of battery temperature can be well predicted through simulation, so as to provide theoretical basis for the design of battery pack

    Aharonov-Bohm effect in monolayer black phosphorus (phosphorene) nanorings

    Full text link
    This work presents theoretical demonstration of Aharonov-Bohm (AB) effect in monolayer phosphorene nanorings (PNR). Atomistic quantum transport simulations of PNR are employed to investigate the impact of multiple modulation sources on the sample conductance. In presence of a perpendicular magnetic field, we find that the conductance of both armchair and zigzag PNR oscillate periodically in a low-energy window as a manifestation of the AB effect. Our numerical results have revealed a giant magnetoresistance (MR) in zigzag PNR (with a maximum magnitude approaching two thousand percent). It is attributed to the AB effect induced destructive interference phase in a wide energy range below the bottom of the second subband. We also demonstrate that PNR conductance is highly anisotropic, offering an additional way to modulate MR. The giant MR in PNR is maintained at room temperature in the presence of thermal broadening effect.Comment: 7 pages, 7 figure

    Zonotopic fault detection observer design for Takagi–Sugeno fuzzy systems

    Get PDF
    This paper considers zonotopic fault detection observer design in the finite-frequency domain for discrete-time Takagi–Sugeno fuzzy systems with unknown but bounded disturbances and measurement noise. We present a novel fault detection observer structure, which is more general than the commonly used Luenberger form. To make the generated residual sensitive to faults and robust against disturbances, we develop a finite-frequency fault detection observer based on generalised Kalman–Yakubovich–Popov lemma and P-radius criterion. The design conditions are expressed in terms of linear matrix inequalities. The major merit of the proposed method is that residual evaluation can be easily implemented via zonotopic approach. Numerical examples are conducted to demonstrate the proposed methodPeer ReviewedPostprint (author's final draft
    • …
    corecore