247 research outputs found

    An extended interval temporal logic and a framing technique for temporal logic programming

    Get PDF
    PhD ThesisTemporal logic programming is a paradigm for specification and verification of concurrent programs in which a program can be written, and the properties of the program can be described and verified in a same notation. However, there are many aspects of programming in temporal logics that are not well-understood. One such an aspect is concurrent programming, another is framing and the third is synchronous communication for parallel processes. This thesis extends the original Interval Temporal Logic (ITL) to include infinite models, past operators, and a new projection operator for dealing with concurrent computation, synchronous communication, and framing in the context of temporal logic programming. The thesis generalizes the original ITL to include past operators such as previous and past chop, and extends the model to include infinite intervals. A considerable collection of logic laws regarding both propositional and first order logics is formalized and proved within model theory. After that, a subset of the extended ITL is formalized as a programming language, called extended Tempura. These extensions, as in their logic basis, include infinite models, the previous operator, projection and framing constructs. A normal form for programs within the extended Tempura is demonstrated. Next, a new projection operator is introduced. In the new construct, the sub-processes are autonomous; each process has the right to specify its own interval over which it is executed. The thesis presents a framing technique for temporal logic programming, which includes the definitions of new assignments, the assignment flag and the framing operator, the formalization of algebraic properties of the framing operator, the minimal model semantics of framed programs, as well as an executable framed interpreter. The synchronous communication operator await is based directly on the proposed framing technique. It enables us to deal with concurrent computation. Based on EITL and await operator, a framed concurrent temporal logic programming language, FTLL, is formally defined within EITL. Finally, the thesis describes a framed interpreter for the extended Tempura which has been developed in SICSTUS prolog. In the new interpreter, the implementation of new assignments, the frame operator, the await operator, and the new projection operator are all included

    Efficient and scalable scheduling for performance heterogeneous multicore systems

    Get PDF
    a b s t r a c t Performance heterogeneous multicore processors (HMP for brevity) consisting of multiple cores with the same instruction set but different performance characteristics (e.g., clock speed, issue width), are of great concern since they are able to deliver higher performance per watt and area for programs with diverse architectural requirements than comparable homogeneous ones. However, such power and area efficiencies of performance heterogeneous multicore systems can only be achieved when workloads are matched with cores according to both the properties of the workload and the features of the cores. Several heterogeneity-aware schedulers were proposed in the previous work. In terms of whether properties of workloads are obtained online or not, those scheduling algorithms can be categorized into two classes: online monitoring and offline profiling. The previous online monitoring approaches had to trace threads' execution on all core types, which is impractical as the number of core types grows. Besides, to trace all core types threads have to be migrated among cores, which may cause load imbalance and degrade the performance. The existing offline profiling approaches profile programs with a given input set before really executing them and thus remove the overhead associated with the number of core types. However, offline profiling approaches do not account for phase changes of threads. Moreover, since the properties they have collected are based on the given input set, those offline profiling approaches are hard to adapt to various input sets and therefore will drastically affect the program performance. To address the above problems in the existing approaches, we propose a new technique, ASTPI (Average Stall Time Per Instruction), to measure the efficiencies of threads in using fast cores. We design, implement and evaluate a new online monitoring approach called ESHMP, which is based on the metric. Our evaluation in the Linux 2.6.21 operating system shows that ESHMP delivers scalability while adapting to a wide variety of applications. Also, our experiment results show that among HMP systems in which heterogeneity-aware schedulers are adopted and there are more than one LLC (Last Level Cache), the architecture where heterogeneous cores share LLCs gain better performance than the ones where homogeneous cores share LLCs
    • …
    corecore