
J. Parallel Distrib. Comput. 72 (2012) 353–361

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX
Contents lists available at SciVerse ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Efficient and scalable scheduling for performance heterogeneous
multicore systems✩

Pengcheng Nie, Zhenhua Duan ∗
Institute of Computing Theory and Technology, and ISN Laboratory, Xidian University, No.2, South Taibai Road, Xi’an, China

a r t i c l e i n f o

Article history:
Received 31 August 2010
Received in revised form
6 December 2011
Accepted 14 December 2011
Available online 22 December 2011

Keywords:
Performance heterogeneous multicore
Scheduling
Algorithm
Operating systems

a b s t r a c t

Performance heterogeneous multicore processors (HMP for brevity) consisting of multiple cores with
the same instruction set but different performance characteristics (e.g., clock speed, issue width), are of
great concern since they are able to deliver higher performance per watt and area for programs with
diverse architectural requirements than comparable homogeneous ones. However, such power and area
efficiencies of performance heterogeneous multicore systems can only be achieved when workloads are
matched with cores according to both the properties of the workload and the features of the cores.

Several heterogeneity-aware schedulers were proposed in the previous work. In terms of whether
properties of workloads are obtained online or not, those scheduling algorithms can be categorized into
two classes: online monitoring and offline profiling. The previous online monitoring approaches had to
trace threads’ execution on all core types, which is impractical as the number of core types grows. Besides,
to trace all core types threads have to be migrated among cores, which may cause load imbalance and
degrade the performance. The existing offline profiling approaches profile programs with a given input
set before really executing them and thus remove the overhead associated with the number of core types.
However, offline profiling approaches do not account for phase changes of threads. Moreover, since the
properties they have collected are based on the given input set, those offline profiling approaches are hard
to adapt to various input sets and therefore will drastically affect the program performance.

To address the above problems in the existing approaches, we propose a new technique, ASTPI
(Average Stall Time Per Instruction), to measure the efficiencies of threads in using fast cores. We
design, implement and evaluate a new online monitoring approach called ESHMP, which is based on the
metric. Our evaluation in the Linux 2.6.21 operating system shows that ESHMP delivers scalability while
adapting to a wide variety of applications. Also, our experiment results show that among HMP systems in
which heterogeneity-aware schedulers are adopted and there are more than one LLC (Last Level Cache),
the architecture where heterogeneous cores share LLCs gain better performance than the ones where
homogeneous cores share LLCs.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

With the development of the semiconductor technology, bil-
lions of fast transistors are pushed onto a single chip. The prob-
lem of interconnect delay and design complexity has become
obvious [11]. Multicore architecture, also known as chip multipro-
cessors (CMPs), which include several processors on a single chip,

✩ This research is supported by the National Program on the Key Basic Research
Project of China (973 Program) Grant No. 2010CB328102, the National Natural
Science Foundation of China under Grant Nos. 60910004, 60873018, 91018010,
61133001, 61003078 and 61003079, SRFDP Grant 200807010012, and the ISN Lab
Grant No. ISN1102001.
∗ Corresponding author.

E-mail addresses: pengcheng.nie@gmail.com (P. Nie),
zhhduan@mail.xidian.edu.cn (Z. Duan).

0743-7315/$ – see front matter© 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2011.12.005
are being widely touted as a solution to thermal and power prob-
lemsby exploring thread level parallelism (TLP) [5]. In order to fully
utilize these cores provided by CMP architecture, programs are
designed to be multi-threaded. However, the computing char-
acteristics of threads and programs often demonstrate substan-
tial diversity. For example, the CPU-boundedness across different
threadsmay varywidely. Even the characteristics of a single thread
may vary during different phases of its execution [15]. Perfor-
mance heterogeneous multicore processors, which consist of mul-
tiple cores with the same instruction set but different performance
characteristics (e.g., clock speed, issuewidth), better accommodate
such diversitywith smaller die area and lower power consumption
as compared to homogeneous ones [9,3,7,8,10,12]. Therefore, per-
formance heterogeneous multicore architecture are gaining more
and more attention. In thiswork, we focus on performance hetero-
geneous multicore systems, where cores differ in clock frequency
and in the last-level-cache (LLC) sharing mode, because such

https://core.ac.uk/display/357253994?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jpdc.2011.12.005
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:pengcheng.nie@gmail.com
mailto:zhhduan@mail.xidian.edu.cn
http://dx.doi.org/10.1016/j.jpdc.2011.12.005


354 P. Nie, Z. Duan / J. Parallel Distrib. Comput. 72 (2012) 353–361
systems canbe easily emulatedusing existingmulticore processors
and are expected to play a promising role in future heterogeneous
systems [14].

Power and area efficiencies of performance heterogeneous
multicore systems can only be accomplished when workloads
are matched with cores according to the properties of the
workload and the features of the cores. For example, in a
performance heterogeneous multicore system with several fast
and powerful cores (high frequency, superscalar) and several
simple and slow cores, if CPU-bound threads were assigned
to slow cores and memory-bound threads to fast cores, fast
cores would spend most of their time waiting and slow cores
would be as busy as a bee, hurting system performance greatly.
Hence, the matching mechanism must take into account the
heterogeneity of the system and the workload, and, especially,
the varying behavior of the threads over time. The matching job
is typically done by a heterogeneity-aware scheduling algorithm
in the operating system [14]. Generally, a heterogeneity-aware
scheduling algorithm consists of three procedures, collecting
properties of workloads, analyzing collected properties and
scheduling threads to cores. In terms of whether properties
of workloads are obtained online or not, heterogeneity-aware
scheduling algorithms can be categorized into two classes: online
monitoring [9,3] and offline profiling [14,13].

Existing online monitoring policies, say IPC-Driven (IPC stands
for Instructions Per Cycle, which is a technique for measuring
a thread’s execution rate) algorithm proposed by Becchi and
Crowley [3], periodically observe runtime behaviors of the running
threads on each core type and assign threads to cores based on
their relative speedup on different core types [9,3]. The thread that
has the greatest fast-to-slow core speedup ratio has the highest
priority to run on the fastest core. Though those online monitoring
approaches adapt to heterogeneity of threads well, as the number
of cores (and core types) on the chip increases [1,4], the overhead
of performance monitoring grows and they become too time-
consuming and impractical. Namely, previous online monitoring
algorithms are unscalable. In order to observe runtime behavior,
IPC-Driven algorithm periodically performs monitoring on all core
types, which means the demands for different core types are the
same. This sampling process, however, may cause load imbalance
andhurt performance if one core type hasmore cores than another.
That is, some cores have more threads than the others. Especially,
the less the fast cores than the slow cores, the more threads
will run on any fast core for monitoring purpose. Unlike online
monitoring policies, offline profiling approaches, such as HASS
(short for Heterogeneity-Aware Signature-Supported scheduling
algorithm) presented by Shelepov et al. [14], profile programswith
a given input set before really executing them and thus remove
the overhead associated with the number of core types. However,
offline profiling approaches like HASS do not account for phase
changes of threads. Moreover, as the properties they are collected
are based on the given input set, those offline profiling approaches
are hard to adapt to various input sets and thus drastically affect
program performance. In other words, offline profiling approaches
provide simplicity and scalability at the cost of sacrificing accuracy.
Furthermore, it requires cooperation from developers to perform
profiling step.

In this paper, we propose ESHMP, an Efficient and Scalable HMP
scheduling algorithm that delivers both accuracy and scalability.
This approach is based on a new technique ASTPI (Average
Stall Time Per Instruction), which is the average time that a
thread spends in waiting for memory accesses for executing one
instruction. For a thread, its average stall time on each core type
could be the same, since each core type has the same memory
hierarchy (see Fig. 1). Besides, we find out that ASTPI reflects a
thread’s efficiency in using fast cores. That is, if a thread has less
a b

Fig. 1. Typical architecture of HMPs, where each core has the same memory
hierarchy. Every two heterogeneous cores share a LLC in architecture (a) and every
two homogeneous cores share a LLC in architecture (b).

average stall time then the core on which the thread executes
will stall itself less. Thus it is sufficient to measure ASTPI on any
core to estimate its performance on all core types. By comparing
the relative benefits for different threads, the scheduler decides
which thread is the best candidate for a particular core type.
Moreover, in response to phase changes of applications, ESHMP
periodically samples their behavior and makes thread-to-core
assignment accordingly.

The main contributions of this work can be summarized as
follows:

• By monitoring ASTPI for a thread on only one core type instead
of on all core types, our algorithm overcomes the unscalability
and load imbalance in the existing online monitoring schedul-
ing algorithms. In addition, the monitoring process is a periodic
one, thus phase changes are considered in our approach. More-
over, our approach is based on runtimebehaviors of threads, not
on demands associated with a specific input set, which means
our algorithm does not rely on input sets (see Section 3). Thus,
our algorithm removes the inaccuracies existing in offline pro-
filing algorithms.
• We formally prove that the stall time of a thread reflects its

efficiency in using a fast core, i.e., the speedup of a thread on
fast core relative to slow core is monotonically decreasing in
the stall time of the thread (see Section 3.2).
• By experiments, we discover that amongHMP systems inwhich

heterogeneity-aware schedulers are adopted and there are
more than one last-level-cache (LLC), the architecture where
heterogeneous cores share LLCs gain better performance than
the ones where homogeneous cores share LLCs (see Section 4).
Also, the discovery is used in turn to evaluate that the ESHMP
scheduler is more efficient than others.

We implemented ESHMP in the Linux 2.6.21 operating system
and evaluated it on real multicore hardware where heterogene-
ity is emulated by setting the cores to run at different frequen-
cies via DVFS (Dynamic Voltage and Frequency Scaling, a facility
offered by most modern processors). We used CPU-bound scien-
tific applications, and constructed workloads containing various
applications: CPU-intensive and memory-intensive, single-phased
and multi-phased.

We compared ESHMP with several other heterogeneity-
aware schedulers including IPC-Driven algorithm and HASS. We
found that for workloads consisting exclusively of single-phased
applications, HASS performs well. It has nothing to do with
the number of core types, but this algorithm is ineffective for
workloads containing multi-phased applications. Conversely, IPC-
Driven method is effective for workloads containing multi-phased
applications, but its overhead grows drastically as the number



P. Nie, Z. Duan / J. Parallel Distrib. Comput. 72 (2012) 353–361 355
of core types increases. ESHMP, on the other hand, effectively
addresses both problems. Its time complexity is constant in the
size of core types. Moreover, it accommodates both single-phased
and multi-phased workloads well. The greatest benefit of ESHMP,
therefore, is that it delivers scalability while adapting to a wide
variety of workloads.

The remainder of this paper is organized as follows. Section 2
describes our motivation and reviews related work. Section 3
presents our scheduling algorithm, and Section 4 evaluates it.
Section 5 concludes our work.

2. Related work

Several heterogeneity-aware schedulers were proposed in the
literature [9,3,14,13]. According to our taxonomy described in
Section 1, they employ either onlinemonitoring or offline profiling.

Kumar et al. [9] and Becchi and Crowley [3] independently
proposed two similar schedulers that adopt online monitoring
approach. Both of them monitor performance of each thread
on each core type and determine its performance improvement
on fast core relative to slow core. They make thread-to-core
assignment according to threads’ performance improvement:
those threads that have a higher fast-to-slow core IPC ratio gain a
priority to run on fast core. Though these algorithms demonstrated
improvements in performance on heterogeneity-agnostic ones,
they have several shortcomings. As the number of core types on
the chip increases, the sampling process becomes rather time-
consuming, hurting their scalability vastly. Besides, threads are
migrated between cores during sampling phases, whichmay cause
load imbalance.

HASS [14] presented by Shelepov et al. uses offline profiling
approach. It profiles application’s architectural properties offline
and embedded these properties into the application binary.
By examining these properties, thread-to-core assignment is
determined, and without any dynamic monitoring of applications’
performance. HASS indeed avoids scalability barriers related to
sampling and has a much simpler implementation, but it does
not account for phase changes and is hard to adapt to various
input sets, and thus it sacrifices accuracy. Moreover, it requires
cooperation from developers to perform the steps needed for the
generation of the architectural signature.

Balakrishnan et al. [2] designed a simple heterogeneity-aware
scheduler for Linux, which makes sure that fast cores never
go idle before slow cores. While this scheduler mitigates the
effects of performance heterogeneity, it does not mean to improve
efficiency. Mogul et al. [12] presented a scheduler that temporarily
switches a thread to run on a slow core when the thread is
executing a system call. By using system calls as a heuristic
for thread assignment, this scheduler completely avoids any
monitoring overhead (or the need to pre-generate architectural
signatures), but it only applies to workloads dominated by system
calls.

Li et al. [10] implemented a heterogeneity-aware algorithm
in Linux, AMPS, which ensures that the load on each core is
proportional to its capacity and that fast cores are never under-
utilized. ESHMP also adopts the policy that faster cores are
considered first before slower cores, but ESHMP makes such a
assignment based on the efficiencies of threads in using fast cores,
while AMPSdoes not, soAMPSmay run amemory-intensive thread
on a fast core and lower system throughput.

Teodorescu and Torrellas [16] developed an optimal algorithm
for scheduling on slightly heterogeneous multicore architecture
where core differences are caused by within-die process variation.
By assuming that a thread’s IPC is the same on all core types, a lot of
overhead is avoided, though performance profiling is still required.
The approachworkswellwhen cores are very similar to each other,
but as compared to our scheduler, it is less applicable to highly
heterogeneous systems.
3. ESHMP scheduler

In this section we describe the design of the ESHMP scheduler.
We start with an overview of this scheduler, and then the details.

3.1. The scheduler

A performance heterogeneous multicore consists of cores with
different power. For the threads running on these cores, their
properties and resource demands may and often will be different.
On such systems, performance improvement can only be realized
when the scheduler map threads to cores in a way that will
maximize the utilization of resources on each other.

In fact, the barriers to optimal scheduling on HMPs exist
in obtaining the resource demands of threads, not in matching
them to cores when their requirements are known. Moreover, the
resource demands of threads are not constants but vary over time
during different phases of its execution. Two approaches adopted
in the existing work are offline profiling and online monitoring.
Among them, offline profiling requires the coordination from
the developers. To get an application’s architectural signature,
developers pre-execute the application with a typical input set
and profile this execution process. But the selection of the typical
input set is quite empirical and the properties generated by the
typical input set cannot exactly stand for all other input sets’
requirements. Furthermore, offline profiling is less easily applied
to applications with a large number of phases, in that the amount
of signatures embedded in the application binaries also grows as
phase increases. Compared to offline profiling, online monitoring
is more accurate and lightweight. Thus, we adopt the online
approach.

The ESHMP scheduling algorithm has two steps: the first step
fetches threads to cores and traces their execution, and the second
step assigns these threads to cores according to threads’ behavior
and cores’ features. Algorithm 1 shows the pseudo code of the
ESHMP scheduling algorithm. The algorithm assumes that the
given heterogeneous multicore processor consists of M cores,
where they are indexed 1 ∼ M , and n threads, where they are
indexed 1 ∼ n. The M cores are sorted in decreasing order of
performance. The set of runnable threads is ordered so that the
priority of ti is greater than or equal to that of ti+1.

The algorithm works as follows. If the number of the ready
tasks is smaller than the number of the cores, each thread in the
set is fetched and assigned to the core with the same index as
the thread. Otherwise, only the first M threads that have higher
priorities are fetched, and traced in the same way as used in the
previous case. After sampling these threads on their corresponding
cores, their efficiencies in using fast cores are obtained (measured
by ASTPI, described in Section 3.2). Then, these monitored threads
are reordered so that the thread with lower index has smaller
ASTPI (i.e., greater efficiency in using fast cores). At last, these
threads are sequentially assigned to the cores indexed from P1
to Pr , where r is the number of the threads that have been
monitored. Thusmore CPU-intensive threads are assigned to faster
cores while less CPU-intensive ones are assigned to slower cores.
Note that this procedure is repeatedly performed in response to
phase changes of applications. In this work, we adopt a moderate
phase-detection mechanism in order to generate less migration as
well as discover more phase changes. The selection of the period,
however, is architecture dependent. In our implementation, we
use 5 ticks for monitoring and 10 ticks for execution (roughly 1
tick = 10 ms in our experimental system). That is, the period
for our implementation is 15 ticks, among them 5 ticks are used
to observe behavior and the rest are devoted to execution. Since
our key objective is to evaluate the effectiveness of our method
by comparing to the existing approaches, we do not pay much



356 P. Nie, Z. Duan / J. Parallel Distrib. Comput. 72 (2012) 353–361
Algorithm 1 The ESHMP scheduling algorithm
Assumption:
i indicates the index of the threads or the cores
r denotes the number of monitored treads
Inputs:
M cores P1, P2, . . . , PM , in decreasing order of performance
n threads t1, t2, . . . , tn, in decreasing order of priority

Begin
1: Step 1: Measuring ASTPI
2: if n < M then
3: r ← n
4: else
5: r ← M
6: end if
7: for i = 0 to r do
8: Measure ASTPI for thread ti on core Pi
9: end for

10:
11: Step 2: Assigning threads
12: Sort the r threads in increasing order of ASTPI such that ASTPI

of ti is smaller than that of ti+1
13: for i = 0 to r do
14: Assign thread ti to core Pi
15: end for
End

attention to this aspect in this work. We are planning to consider
more sophisticated phase-detection mechanisms in our future
work.

As can be seen, ESHMP does not rely on the number of
core types, thus outperforming existing online algorithms in
complexity. Our evaluation results in Section 4 will confirm this
point.

3.2. The new technique: ASTPI

In general, almost any thread gains speedup on fast cores
relative to slow cores, but the degree of speedup may be different.
To improve system throughput, however, among all available
threads, only those threadswith higher performance improvement
on fast cores should be assigned to fast cores. As mentioned
earlier, to measure speedup ratios, existing online monitoring
approaches trace performance of threads on each core type;
whereas monitoring ASTPI on any core is sufficient for ESHMP to
discover efficiencies of threads in using fast cores.

The key insight is as follows. The completion time of a thread
may be divided into two components: execution time, which is
the amount of time that CPU spends in ‘‘real execution’’, and stall
time, which is the amount of time that CPU spends in waiting for
memory accesses. As mentioned before, for a thread, its stall time
on each core type could be the same, since each core type has the
samememory hierarchy (see Fig. 1). The ASTPI of a thread indicates
the average time that the thread spends in waiting for memory
accesses for executing one instruction. The smaller the ASTPI of a
thread is, the greater the ratio of arithmetic operations to memory
operations in the codes being executed by the thread, and the less
the time it spent inwaiting formemory accesses, thus themore the
benefits it can gain on fast core type. In other words, the speedup
of a thread on fast core relative to slow core is monotonically
decreasing in the stall time of the thread. Since ASTPI of a thread
implies the thread’s efficiency in using a fast core, it is adopted as
the technique for our scheduler.

First we demonstrate how ASTPI can be determined. Due to
the completion time for a thread is composed of execution time
and stall time, the stall time of the thread on core A can be
determined by: ST A = CTA − ETA, where ST A, CTA and ETA
are the thread’s stall time, completion time and execution time
achieved on core A, respectively. In addition, CT A = Ninstr/IPSA,
in which Ninstr is the number of instructions of that thread, and
IPSA is the actual execution rate that the thread achieved on core
A. Further, ET A = Ninstr/MIPSA, where Ninstr is the number of
instructions of that thread, and MIPSA is the maximum IPS that
core A is able to provide, which is achieved when no memory
access happens. By substituting CTA and ETA with Ninstr/IPSA and
Ninstr/MIPSA separately, we have:

ST =
Ninstr

IPSA
−

Ninstr

MIPSA
=

Ninstr × (MIPSA − IPSA)
IPSA ×MIPSA

. (1)

Moreover, ASTPI can be obtained by scaling down ST by Ninstr
times:

ASTPI =
MIPSA − IPSA
IPSA ×MIPSA

. (2)

Then the definition for ASTPI can be formally given as follows:

Definition 1. ASTPI (Average Stall Time Per Instruction) for a
thread is the average stall time that the thread takes for executing
one instruction. It can be measured using the following formula:

ASTPI =
MIPSA − IPSA
IPSA ×MIPSA

(3)

where MIPSA is the maximum IPS that core A can provide, which
can be statically determined by the frequency of core Amultiplied
by the maximum IPC of core A (i.e.,MIPSA = MIPCA × FrequencyA),
and IPSA is the IPS that the thread achieved on core A, which
can be dynamicallymonitored via hardware performance counters
(i.e., IPSA = Ninstr/CTA).1

At last let us explain the basic idea in detail. The speedup factor
(SF ) for a thread is the degree of performance improvement of
the thread running on fast core relative to slow core, which is
measured using the following formula:

SF =
CTslow
CTfast

(4)

where CTfast and CTslow are the thread’s completion times achieved
on fast and slow cores respectively. Intuitively, for a thread, SF is
the degree of the reduction of the completion time running on fast
core relative to slow core. As the completion time for a thread is
composed of execution time and stall time, the SF for the thread
can be transformed into:

SF =
ETslow + STslow
ETfast + STfast

(5)

where ETfast and ETslow denote the thread’s execution times
achieved on fast and slow cores individually, and STfast and STslow
are the thread’s stall times achieved on fast and slow cores

1 A similar terminology has beendefined in [6] but our definition does not conflict
with it. The two terminologies are defined from different angles. The terminology
proposed by Hennessy et al. [6] is defined using the sum of products of cachemisses
and related penalties of all levels. Since the cache hierarchy adopted in modern
CPUs often has more than one level, it has more parameters (i.e., cache miss rates
of all levels) than ours (i.e., IPS), incurring more complexity. More important is
that modern CPUs only provide facilities for measuring the miss rate of the last
level cache (LLC), which means it is impractical to measure average stall time per
instruction (ASTPI) using just LLC. Thus a new way to determine ASTPI is presented
in this work.



P. Nie, Z. Duan / J. Parallel Distrib. Comput. 72 (2012) 353–361 357
separately. Because STfast equals STslow (the stall times of a thread
on all core types are equal), we have:

SF =
ETslow + ST
ETfast + ST

, ST ≥ 0 (6)

where ST is the stall time which the thread achieved on any core.
The ET of a thread on a core can be expressed as: ET = Ninstr/MIPS,
whereNinstr is the number of instructions of that thread, andMIPS is
themaximum IPS that the core is able to provide,which is achieved
when no memory access happens. Thus we can consider SF as a
function of ST . Then the derivative of SF is as follows:

SF ′(ST ) =
ETfast − ETslow
(ETfast + ST )2

, ST ≥ 0 (7)

Obviously, SF ′(ST ) is negative since fast core takes less time to
execute the thread than slow core does. So wemay safely draw the
conclusion that the speedup of a thread on fast core relative to slow
core is monotonically decreasing in the stall time of the thread. In
other words, the smaller the stall time is, the greater the speedup
factor is. Similar conclusion can be drawn for ASTPI as well, since
ASTPI is the stall time divided by the number of instructions of
that thread. That is, the smaller the ASTPI is, the less the time the
thread spends in waiting for memory accesses. The maximum and
the minimum of SF are SF(0) and SF(+∞) respectively, as it is
monotonically decreasing in ST and ST ≥ 0. They are calculated
as follows:

SF(0) =
ETslow
ETfast

=
MIPSfast
MIPSslow

(8)

where MIPSfast and MIPSslow denote the MIPSes that fast and slow
cores are able to provide respectively.

SF(+∞) = lim
ST→∞

SF(ST ) = 1. (9)

From above, we can see that the issue of determining threads’
speedup is able to be converted into the issue ofmeasuring threads’
ASTPI. Therefor, we are able to use ASTPI as a technique tomeasure
threads’ efficiencies in using fast cores.

The experiment results in Section 4.2 show that the ASTPIs of
a thread on all core types are the same and demonstrate that the
technique of ASTPI closely approximates threads’ efficiencies in
using fast cores.

4. Evaluation

This section discusses our evaluation methodology and results.

4.1. Methodology

Two computers were used to evaluate the ESHMP scheduler.
One was a dual-socket× quad-core Intel Xeon Clovertown server
in which every quad-core package consists of two dual-core
chips. Each core includes a 64 KB L1 cache, and each chip (two
cores) has a shared 6 MB L2 cache. All cores run at frequencies
of 2 and 2.83 GHz. A pair of cores on a package are within a
voltage/frequency scaling domain, i.e., every dual-core chip is a
frequency scaling unit. This one was mainly used to validate the
accuracy of our method for estimating the efficiency of a thread
in using a fast core, for it has only two frequencies available for
scaling. Another was an AMD Operon system with two quad-core
chips. Each core has private 64 KB instruction and data caches, and
a private L2 cache of 512 KB. A 2 MB L3 cache is shared by the
four cores on a chip. Each core is capable of running at a range
of frequencies from 1.15 to 2.3 GHz. The frequency of each core
is able to be varied independently, for each core is within its own
voltage/frequency domain.
First, we created two configurations to test the accuracy of
our method for estimating the thread’s efficiency in using a
fast core. Then, in order to validate that the ESHMP scheduler
has an edge in scalability over the existing online approaches
(such as IPC-Driven), we created three test configurations, and
different configurations have different number of core types.
For our algorithm is heterogeneity-aware, among those threads
scheduled by it, memory-intensive threads are allocated to slow
cores and CPU-intensive threads are allocated to fast ones. Thus,
those threads on slow cores are more cache-greedy than those
on fast cores. With such a scheduler, sharing a LLC among slow
cores causes cache conflicts, while sharing a LLC among fast cores
causes cache to be idle. We asserted that among HMP systems
in which heterogeneity-aware schedulers are adopted and there
are more than one LLC, the architecture where heterogeneous
cores share LLCs gain better performance than the ones where
homogeneous cores share LLCs, e.g., in Fig. 1 architecture (a) is
better than architecture (b). As ESHMP, IPC-Driven and HASS are
all heterogeneity-aware schedulers, we may expect that they all
will perform better on systems configured with heterogeneous
LLC-sharing mode. That is, they gain better performance on
heterogeneous LLC-sharing setups because they are able to match
threads to cores according to the characteristics of threads and
cores.Moreover, themost heterogeneity-aware scheduler is bound
to gain the most on heterogeneous LLC-sharing mode, as it is
able to make the most accurate assignment. So, at last, another
two configurations were created to validate the assertion and
to evaluate which scheduler is more heterogeneity-aware. We
created those test configurations by disabling some of the cores
and setting cores to run at different frequencies using DVFS. All
these test configurations are summarized in Table 1.

The benchmarks used to evaluate our algorithm were from
the SPEC CPU 2006 suite. To simulate real workloads as far as
possible, nineteen benchmarks with a wide variety of behaviors
were selected from 29 ones of the suite, including memory-
intensive (MI) ones (e.g., milc and soplex), CPU-intensive (CI)
ones (e.g., namd and calculix) and multi-phased ones (e.g., astar
and leslie3d). We constructed ten workloads with these selected
benchmarks (see Table 2). These workloads can be classified into
three categories: single-phased (SP), multi-phased (MP) and mix-
phased. The benchmarks in single-phased workloads are single-
phased, either memory-intensive or CPU-intensive. While the
benchmarks in multi-phased workloads exhibit different phases
across their execution (e.g., h264ref is a CPU-intensive application
that also exhibits some memory-intensive phases), and mix-
phased workloads consist of both single-phased and multi-phased
benchmarks. The first five workloads are single-phased ones
that combine homogeneous applications (4CI and 4MI) or mix
CPU-intensive and memory-intensive applications (3CI-1MI, 2CI-
2MI and 1CI-3MI). The workloads 4MP_A and 4MP_B are multi-
phased ones. The remaining workloads are mix-phased ones. The
workload names in the left column are listed in the same order
as the corresponding benchmarks in the right column, so for
example in the 3MP-1SP workload bwaves, leslie3d and astar are
multi-phased (MP) applications and namd is a single-phased (SP)
application.

For a test of a given workload, we launch its predetermined
benchmarks, and when a benchmark terminates it is restarted
repeatedly by a script until the longest benchmark in the
workload completes three times. The average completion time
of each benchmark under ESHMP is measured and compared to
those under IPC-Driven and HASS. Since the ESHMP scheduler
is proposed to make an improvement on IPC-Driven and HASS,
we implemented all three of them on Linux 2.6.21 to validate
this. In order to fairly compare our approach with IPC-Driven, for
the implementation of IPC-Driven, we adopted the same phase-
monitoring duration as ESHMP (i.e., 5 ticks, see Section 3.1).



358 P. Nie, Z. Duan / J. Parallel Distrib. Comput. 72 (2012) 353–361
Table 1
Test configurations.

Name Core types / cores Other information

Intel-2, 2 Core type.1:(2@2.0 GHZ) For evaluating the accuracy of ASTPICore type.2:(2@2.83 GHZ)

AMD-2, 2 Core type.1:(2@1.15 GHZ) For evaluating the accuracy of ASTPICore type.2:(2@2.3 GHZ)

AMD-2, 2 Core type.1:(2@1.4 GHZ) Two core typesCore type.2:(2@2.3 GHZ)

AMD-2, 1, 1
Core type.1:(2@1.4 GHZ)

Three core typesCore type.2:(1@2.0 GHZ)
Core type.3:(1@2.3 GHZ)

AMD-1, 1, 1, 1

Core type.1:(1@1.15 GHZ)

Four core typesCore type.2:(1@1.4 GHZ)
Core type.3:(1@2.0 GHZ)
Core type.4:(1@2.3 GHZ)

AMD-2, 2 Core type.1:(2@1.4 GHZ) Every two homogeneous cores share one L3 cacheCore type.2:(2@2.3 GHZ)

AMD-2, 2 Core type.1:(2@1.4 GHZ) Every two heterogeneous cores share one L3 cacheCore type.2:(2@2.3 GHZ)
Table 2
Workloads.

Workload name Benchmarks

4CI perlbench, povray, sjeng, gromacs
3CI-1MI calculix, povray, hmmer, mcf
2CI-2MI namd, sjeng, soplex, omnetpp
1CI-3MI gamess, GemsFDTD, milc, mcf
4MI GemsFDTD, soplex, milc, omnetpp
4MP_A h264ref, libquantum, leslie3d, astar
4MP_B h264ref, dealII, bwaves, astar
3MP-1SP bwaves, leslie3d, astar, namd
2MP-2SP namd, gamess, leslie3d, astar
1MP-3SP astar, sjeng, milc, mcf

That is, IPC-Driven monitors threads’ execution for 5 ticks on each
core type before making thread-to-core assignment.

The rest of the evaluation section is structured as follows.
In Section 4.2 we evaluate the accuracy of our method for
estimating a thread’s efficiency in using a fast core. In Section 4.3
we explore the scalability of our approach associated with the
number of core types. In Section 4.4 we analyze the efficiency of
our approach in adapting to applications with various phases and
behaviors. In Section 4.5 we discuss the influence of LLC-sharing
mode on the performance of HMPs and some results are presented.

4.2. Accuracy of ASTPI

For all applications in SPEC CPU 2006 suite, we first compare
their ASTPIs on all core types with each other to further confirm
that the stall times of a thread on all core types are the same, and
then we compare the estimated SF to the actual SF to evaluate
the accuracy of ASTPI estimation. The variance of ASTPIs across
different core types is collected by running the benchmark on all
core types, determining ASTPIs on these cores, and calculating
the ratio of the standard deviation (SD) of the ASTPIs to the
average value of the ASTPIs. Actual SF is measured by running the
application on the slow core, then on the fast core, and computing
the speedup. Estimated SF is obtained from the ASTPI throughout
the entire run of the application on only one core.

As shown in Fig. 2, the standard deviations of all applications
from their average values are nomore than 4%, sowemay consider
the variances of ASTPIs across core types for all applications are the
same. Fig. 3 demonstrates that the estimates are accurate for all
benchmarks on both platforms.
4.3. Scalability analysis

Scalability was one of the main focuses in ESHMP’s design, and
so various configurationswith different number of core typeswere
considered for evaluation. In this section, we will analyze how the
speedup of ESHMP over the other two schedulers varies as setup
complexity grows.

Figs. 4 and 5 compare the speedups of ESHMP over IPC-Driven
for different number of core types with various workloads on the
AMD platform. For both single-phased workloads (4CI, 3CI-1MI,
2CI-2MI, 1CI-3MI and 4MI) and non-single-phased workloads
(4MP_A, 4MP_B, 3MP-1SP, 2MP-2SP and 1MP-3SP), the speedup of
ESHMP over IPC-Driven grows drastically as the number of core
types increases. That is because our method is constant in the
number of core types while IPC-Driven is not, though they both
adopt online monitoring approach and use the same period for
monitoring. The speedup of ESHMP is not more than 11% when
there are only two core types. The speedup grows more than 13%
for the case that the number of core types increases from two to
three, but within 11% for the case that the number of core types
increases from three to four. The result is out of our expectation
in that the speedup of ESHMP over IPC-Driven is not linear in the
size of core types. We expected that the speedup growth could be
the same for the above two cases since IPC-Driven traces on all
core types and ESHMP monitors on only one core type. This result
is due to IPC-Driven leads to load imbalance while monitoring on
configuration AMD 2,1,1 (see Table 1), where all core types are not
configured with the same number of cores thus cores of small core
type (i.e., have less cores) have more threads running on them for
monitoring purpose.

Results for the speedups of ESHMP over HASS for different
number of core types are shown in Figs. 6 and 7. As expected, the
speedups of ESHMP over HASS are similar for configurations with
different number of core types (variances among themare less than
2%), in that it, likes our approach, dose not rely on the number of
core types.

4.4. Efficiency analysis

Another emphasis in ESHMP’s design was the ability to
adapt to programs with various phases and behaviors, and thus
applications with different behaviors and many phases were used
for evaluation. In this section, we will discuss how the speedup of
ESHMP over the other two schedulers alters as workload changes.



P. Nie, Z. Duan / J. Parallel Distrib. Comput. 72 (2012) 353–361 359
Fig. 2. Variances of ASTPIs across cores for all applications in SPEC CPU 2006 suite on an Intel Xeon and an AMD Opteron platforms.
Fig. 3. Observed and predicted speedup factors for all applications of SPEC CPU 2006 suite on an Intel Xeon (top) and an AMD Opteron (bottom) platforms.
Fig. 4. Speedup of ESHMP over IPC-Driven for different # of core types with single-
phased workloads on the AMD platform.

In Fig. 6, we could observe that ESHMP even has a bit more
overhead than HASS for single-phased workloads. That is because
that our approach has to do an extramonitoring step to trace phase
changes of applications during scheduling, but rare phase changes
occur in single-phasedworkloads. Nevertheless, the overhead is so
slight (no more than 2%) that it is ignorable. Besides, pure single-
phased applications rarely exist in real workloads. In addition,
for single-phased workloads including CPU-intensive applications,
ESHMP is almost comparable to HASS (within 1%). That is because
memory-intensive applications gain less speedup on fast cores
than CPU-intensive ones do. In other words, if there are more
Fig. 5. Speedup of ESHMP over IPC-Driven for different # of core types with multi-
phased and mix-phased workloads on the AMD platform.

CPU-intensive applications in the workloads, ESHMP would use
more benefits from heterogeneity-aware scheduling to make up
for overheads resulted from runtime monitoring. For workloads
containing multi-phased applications (Fig. 7), HASS does not
guarantee optimal scheduling and is worse than ESHMP by
5%–19%. Themoremulti-phased applications there are, the greater
the speedup of ESHMP over HASS. For instance, the speedup for
workload 4MP_A, which includes four multi-phased applications,
is greater than that for workload 2MP-2SP, which only contains
two multi-phased workloads. Overall, ESHMP outperforms HASS



360 P. Nie, Z. Duan / J. Parallel Distrib. Comput. 72 (2012) 353–361
Fig. 6. Speedup of ESHMP over HASS for different # of core types with single-
phased workloads on the AMD platform.

Fig. 7. Speedupof ESHMPoverHASS for different # of core typeswithmulti-phased
and mix-phased workloads on the AMD platform.

Fig. 8. Speedup of heterogeneous LLC-sharing mode over homogeneous LLC-
sharing mode for different schedulers with single-phased workloads on the AMD
platform.

vastly. The reason for the result is that HASS does not consider
phase changes of applications.

Results for the speedups of ESHMP over IPC-Driven for different
workloads are shown in Figs. 4 and 5. For the same reason
as the previous case, ESHMP performs better for CPU-intensive
applications as compared to IPC-Driven. For other workloads,
ESHMP varies slightly (within 4%) as workload changes. That is
because both ESHMP and IPC-Driven explore the same phase-
detection mechanism for monitoring phase changes for all kinds
of workloads.

4.5. Architecture analysis

Figs. 8 and 9 show speedups of ESHMP, HASS and IPC-Driven
on the evaluation platform with heterogeneous LLC-sharing mode
Fig. 9. Speedup of heterogeneous LLC-sharing mode over homogeneous LLC-
sharing mode for different schedulers with multi-phased and mix-phased
workloads on the AMD platform.

relative to that with homogeneous LLC-sharing mode. As shown
in Fig. 8, for the workload that merely consists of CPU-intensive
applications, the speedups for all schedulers increase no more
than 3%. That is because CPU-intensive benchmarks are not
as cache-greedy as memory-intensive ones, the change of LLC-
sharing mode only has a weak influence on system throughput.
For the workload consisting exclusively of memory-intensive
applications, the speedups for the three schedulers are more than
23%. All the three heterogeneous-ware schedulers gain benefits
from heterogeneous LLC-sharing mode, which confirms that our
estimation is correct. IPC-Driven and HASS are not comparable,
each of them outperforms the other for some kinds of workloads.
As compared to IPC-Driven, ESHMP is definitely more efficient.
Even though ESHMP has a bit more overhead (less than 2%) than
HASS for single-phased workloads, it is more heterogeneity-aware
on thewhole, which is just the same aswe analyzed in the previous
subsection. At last, the fact that the relative speedups of ESHMP
over other schedulers in Figs. 8 and 9 are not as large as that in
Figs. 4–7 manifests that LLC-sharing mode has less influence on
system performance than scheduling algorithm does.

5. Conclusions

We have proposed a new technique for measuring threads’
efficiencies in utilizing fast cores, called ASTPI. We have shown
that ASTPIs of a thread on all core types are the same and proved
that the speedup factor of a thread is monotonically decreasing
in ASTPI. Furthermore, we have provided an efficient and scalable
scheduler based on the technique. Though a simple phase-
detection mechanism was employed, through our evaluation of
a real OS implementation on real hardware we determined that
the ESHMP scheduler delivers scalability while adapting to a wide
variety of applications. Besides,wediscovered that heterogeneous-
LLC sharing mode is better than homogeneous-LLC sharing mode
for HMP systemswithmore than one cache,which could be used as
a suggestion to hardware designers. The evaluation results on such
settings also demonstrated that ESHMP is more heterogeneity-
aware.

In this work, much more attention has been paid to perfor-
mance estimation techniques, while less attention has been paid
to scheduling mechanisms, in particular, phase-detection mecha-
nism. Therefore, in the future work, wewill focus on these aspects.

Acknowledgments

We are grateful to the anonymous reviewers for their valuable
comments and suggestions. We believe that their suggestions will
serve us well throughout our career. We would also like to express
our gratitude to Xiaofeng Liu for giving us access to their servers.



P. Nie, Z. Duan / J. Parallel Distrib. Comput. 72 (2012) 353–361 361
References

[1] K. Asanovic, et al., A view of the parallel computing landscape, Communica-
tions of the ACM 52 (2009) 56–67.

[2] S. Balakrishnan, R. Rajwar, M. Upton, K. Lai, The impact of performance
asymmetry in emerging multicore architectures, in: Proceedings of the 32nd
International Symposium on Computer Architecture (ISCA05), 2005.

[3] M. Becchi, P. Crowley, Dynamic thread assignment on heterogeneous
multiprocessor architectures, in: Proceedings of the 32ndAnnual International
Symposium on Computer Architecture (ISCA’05), 2005.

[4] S. Borkar, Thousand core chips—a technology perspective, in: Proceedings of
the 44th annual Design Automation Conference, 2007.

[5] L. Hammond, B. Nayfeh, K. Olukotun, A single-chip multiprocessor, Computer
30 (1997) 79–85.

[6] J.L. Hennessy, D.A. Patterson, A.C. Arpaci-Dusseau, Computer Architecture:
A Quantitative Approach, vol. 1, Morgan Kaufmann, 2007.

[7] R. Kumar, K.I. Farkas, N.P. Jouppi, P. Ranganathan, D.M. Tullsen, Single-
ISA heterogeneous multi-core architectures: the potential for processor
power reduction, in: Proceedings of the 36th International Symposium on
Microarchitecture (MICRO-36’03), 2003.

[8] R. Kumar, D.M. Tullsen, N.P. Jouppi, P. Ranganathan, Heterogeneous chip
multiprocessors, Computer (2005) 32–38.

[9] R. Kumar, D.M. Tullsen, P. Ranganathan, N.P. Jouppi, K.I. Farkas, Single-
ISA heterogeneous multi-core architectures for multithreaded workload
performance, in: Proceedings of the 31st Annual International Symposium on
Computer Architecture (ISCA’04), 2004.

[10] T. Li, D. Baumberger, D.A. Koufaty, S. Hahn, Efficient operating system schedul-
ing for performance-asymmetric multi-core architectures, in: Proceedings of
the 2007 ACM/IEEE Conference on Supercomputing (SC’07), 2007.

[11] J.D. Meindl, Gigascale integration: is the sky the limit? IEEE Circuits and
Devices Magazine 12 (1996) 19–24.

[12] J.C. Mogul, J. Mudigonda, N. Binkert, P. Ranganathan, V. Talwar, Using
asymmetric single-ISA CMPs to save energy on operating systems, IEEE Micro
52 (2008) 56–67.

[13] D. Shelepov, A. Fedorova, Scheduling on heterogeneous multicore processors
using architectural signatures, in: Proceedings of the Workshop on the In-
teraction between Operating Systems and Computer Architecture, in con-
junction with the 35th International Symposium on Computer Architecture
(WIOSCA’08), 2008.
[14] D. Shelepov, J.C. Saez, S. Jeffery, A. Fedorova, N. Perez, Z.F. Huang, S. Blagodurov,
V. Kumar, HASS: a scheduler for heterogeneous multicore systems, Operating
Systems Review 43 (2009) 66–75.

[15] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, B. Calder, Discovering and
exploiting program phases, IEEE Micro 23 (2003) 84–93.

[16] R. Teodorescu, J. Torrellas, Variation-aware application scheduling and
power management for chip multiprocessors, in: Proceedings of the 35th
International Symposium on Computer Architecture (ISCA’08), 2008.

Pengcheng Nie received his B.Sc. degree from the
School of Software at the Northwest University of China
in 2005. Currently, he is working toward the Ph.D.
degree at the Xidian University, China. His research
interests include modeling and scheduling for parallel
and distributed computing systems, parallel algorithms
and system architectures. He is a member of the China
Computer Federation, a member of the IEEE, the IEEE
Computer Society, and a member of the ACM.

Zhenhua Duan is a professor of Computer Science at the
Xidian University, Xian China. He obtained his B.Sc. and
M.Sc. degrees from the Northwest University of China in
1982 and 1987, and the Ph.D. degree from the University
of Newcastle upon Tyne in 1996. He worked as a research
associate in three universities including the University of
Ulster, the University of Newcastle upon Tyne and the
University of Sheffield. His research interests concentrate
on concurrent, real-time, and hybrid systems, including
modeling, simulation, and verification of such systems. In
addition, he is interested in temporal logic programming,

formal languages and automata, and formal semantics. He is also interested in
multicore programming. He is a senior member of the China Computer Federation,
a senior member of the IEEE, the IEEE Computer Society, and a senior member of
the ACM.


	Efficient and scalable scheduling for performance heterogeneous multicore systems
	Introduction
	Related work
	ESHMP scheduler
	The scheduler
	The new technique: ASTPI

	Evaluation
	Methodology
	Accuracy of ASTPI
	Scalability analysis
	Efficiency analysis
	Architecture analysis

	Conclusions
	Acknowledgments
	References


